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Abstract

There is a body of literature concerning or related to thect&in of source code
texts that have the same origin. This paper presents a sofv@ych literature, and
provides an overview of the topic.
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1 Introduction

Within the last decade or so, a number of publications onctieteof co-derivative source
code texts have been published. This paper presents a safrgeyne the existing, public
knowledge that is related to the topic.

By co-derivative we mean texts that have the same origin [16], i.e. we calltexts co-
derivative if they have both been created via modificatioa cbmmon ancestor, or if one
of the texts is the ancestor of the other. For discussion actgxwhat we mean by the
termsource codesee Section 2.

It is not possible to determine with absolute certainty Wbetwo texts are co-derivative
simply by examining the texts themselves. Some informagixternal to the texts would
be required to do so. Therefore, when performing co-dévizatetection with only source
code as the input, we believe the best that can be done iskddogufficiently long texts
that have such similarities that there is reason to belieatthe texts are co-derivative. In
Section 3, we cover different factors that one could comsidetermining similarity, and
their usefulness in the context of co-derivative detection

In Section 4, in turn, we move on to discuss the “durability’tlee similarities, by which
we mean the amount of work it takes to remove them, eithertamiionally (as the source
code evolves) or deliberately (perhaps to hide plagiaridaifg list some of the things that
one might do to deliberately alter the appearance of sowde,and mention some of the
tools available that can be applied for this purpose.



To make similarity quantitative, we must be able to meaduresome manner. To do so, it
is necessary to choose a metric for the similarity of a pasoofrce code texts, and to find
a way to measure the similarity in accordance to that mef@xtion 5 presents a number
of different approaches to measuring source code sinsilarit

To allow the similarity measurement methods themselvesrt@in simple, it may be nec-
essary to in some way preprocess all the source code beingacech This is so that some
(or ideally all) uninteresting information that might caute chosen measurement method
to fail to identify similar texts can be dropped. Section Scdisses some transformations
that could be performed prior to source code similarity meament.

For some metrics, measuring merely involves calculatikgridrequencies for each source
code file, and then comparing them; such comparisons ardesang efficient. However,
when using “structural metrics”, one is typically requitedietermine the longest common
code sequences that appear in both of the compared bodiesir@iescode. When the
amount of source code being analyzed is large, it is impofanthe string matching
algorithm being applied to the task to be reasonably efficiBection 7 gives a summary
of some of the string matching algorithms that have beerepted in literature.

Having presented metrics for measuring source code sitgjlas well as techniques and
algorithms which assist in performing the actual measurgsaeve continue in Section 8
by describing and comparing some of the technologies thatty apply some of these
ideas in practice.

Finally, we discuss possible future work in Section 9, arehthonclude with Section 10
by summarizing what has been presented in the precedingrsgct

2 Source Code

Software programs are almost invariably written and maieth in the so-called source
code form, instead of directly constructing and modifyingdbies suitable for execution
in a particular environment. Before a program can be exdgilie source code must be
translated into a form suitable for execution; sometimésiidone transparently just prior
to running a program, and sometimes explicitly using a @ogcalled acompiler.

The term source code is often defined quite loosely, to enasmbinary code as well, but
in the context of this paper, we shall define the source codesoftware system as being
a textual description of the computation performed by tbétixare system, in a language
designed to be readable by both humans and machines. Weettsatrauch a language has
a limited vocabulary of keywords and predefined identifi@rerfls with special meaning
in the language), and a well-defined grammar and semantiagird languages are thus
excluded from this definition.

We do not insist that source code would always have to beenritty a human; indeed,
there are many tools capable of generating or modifyingcande according to the



instructions provided by the user. Naturally, the utiliaatof such tools present challenges
for the detection of co-derivatives.

2.1 Programming Languages

We shall define the terrmprogramming languagas a language in which source code may
be written. When looking for similarities in two source cdies, the simplest approach
would be to disregard the programming language and treatsaode like any other
text, and then, for instance, find those lines of text thdedifvith the UNIX di f f com-
mand [10]. This way, one would not need to care about the Eggun which the source
code has been written.

If, on the other hand, one does know the source code languatjenakes use of that

knowledge in source code analysis, one can not only anafsttucture of the text, but

also the structure and semantics of the program itself. éfwants to measure something
other than the textual similarity of source code, it is neaeg to take on the burden of
explicitly adding support for each of the languages whosecscode is to be analyzed.

Even if a tool already supports some programming languagegjng it understand an
additional one can still involve a lot of work, as there arasiderable differences between
languages. The amount of work required is greatly affectethb depth of the analysis
required; parsing expressions of a particular languagestéde more effort than recogniz-
ing strings that look like keywords in that language. It maydesirable for the sake of
performance alone to avoid solutions that require the mgladf a full semantic analyzer
for each supported language, especially when it comes tplexfanguages such as C++.

2.2 Compilers

When someone says he or she has implemented a programmiugdg) it usually means
that he or she has implemented a compiler oirgerpreter for it (possibly among other
things). As already mentioned, a compiler is a program taaustates source code into a
form suitable for execution in a particular runtime envirent; we refer to code produced
by a compiler agbject code

An interpreter, in turn, is a program that accepts sourcee @slits input and executes
the program described by the source code. Many interprdterst execute the provided
source code as is, but rather they first convert it into sortegnal form that is faster or
easier to execute. Such an interpreter could thus be retjasceecombination of a compiler
and a runtime environment. We shall, however, exclude sudbedded compilers from
our discussion in this section, and concentrate on standalompilers that output object
code and write the code into one or more files.

The process of converting source code into object codevasoinultiple phases, which
may interleave to an extent. For instance, it is common te s syntactic analysis phase



“drive” the lexical analysis phase by having the lexical lgper scan for more tokens
only as they are required by the syntactic analyzer. Diffemmpilers have different
functionality, and therefore their compilation process/nm&olve different sets of phases;
the following set is typical:

Lexical analysis. In the lexical analysis (or scanning) phase, the compileveds a se-
guence of characters into a sequence of lexical items, vareloften calledokens
Any characters not of significance in later phases (e.g.etbosstituting comments
or delimiting whitespace) can already be dropped at thigesté compilation simply
by not including them in any of the generated tokens. Anyatigr sequences that
may not appear in the language should be caught.

Each token that does get generated is given a type; the tyjmtésmined based on
the textual content of the token, and possibly also the &omtewhich the token
appears. The textual content of the token may be recorddaitoken as is or after
a conversion to some other form, or it may even be left ougeltwer; the choice of
what to do depends on what information is required in the lalbases.

Syntactic analysis. In the syntactic analysis (or parsing) phase, the tokenesespigener-
ated during the scanning phase is analyzed in order to godans into grammatical
phrases; token sequences that are not valid in the sourgedge are naturally iden-
tified as well.

A parser typically produces a tree-like data structure sslitput, containing a hi-

erarchical representation of the parsed program. As lagegu@ommonly have con-

structs that may nest — say a conditional statement coulthicoather statements,

with practically unlimited nesting — it is natural to buildr@e instead of a sequence
for storing the results of this phase. The data structureumed during syntactic

analysis is often referred to as abstract syntax treAST).

As with the tokens produced by a scanner, the nodes of an AS&lso assigned a
type. Any additional information associated with a node @etiired in later phases
must also be recorded, usually in the data structures repiieg the nodes.

Semantic analysis.In the semantic analysis phase, the meaning of each phrpsaramm
in the program code is determined. This involves relatimipise references to their
definitions, as well as collecting type information. In stally typed languages, type
checking is performed.

Intermediate representation generation. During this phase, an intermediate representa-
tion (IR) that is not tied to any particular source languageéaeget machine archi-
tecture is produced [2]. This makes it possible to have plelfront ends and back
ends in the same compiler, which in turn facilitates supfmrimultiple languages
and target platforms.

Optimization. During this phase, optimizing transformations are appleethe interme-
diate representation with the aim of making the code smafidror faster to execute.



Code emission.During this phase, the intermediate representation iskaged into object
code suitable for execution on a particular platform.

Linking. During the linking phase, one or more relocatable objeceddds are linked
to form an executable. This phase is sometimes performeddsmparate program
called alinker, or at runtime by the execution environment.

Most compilers perform multiplpassesover the program being translated into object
code, changing the representation of the program in somenithyeach pass. The passes
do not necessarily correspond to the phases listed aboiutdsgmssible to have multiple
phases in one pass, or to perform multiple passes in one.phase

2.3 Decompilers

A decompiler is a tool that attempts to reverse the transéition performed by a compiler,
i.e. given object code produced by a compiler, the tool gtterto derive the original source
code. In practice, at least some information always getadied during compilation, and
thus it is reasonable to assume that source code will nottseagame if piped through a
compiler and a decompiler. The level of success that a deidemgan attain depends on
factors such as:

e The abstraction level of the source language; it is easkeatsform object code into
assembly code than into an object-oriented (OO) language.

e The abstraction level of the object code; if, for instante dbject code contains
explicit information about the class structure that appeédn the original source
code, it is far easier for a decompiler to deduce that infoiona

e The amount of symbolic information in the object code; anynimg information
in the object code should help increase the readability efgénerated code, as
descriptive identifier names are important for understagndode semantics.

e The level of optimizing transformations that were perfodvouring compilation.
Less optimized code would generally be easier to decomgmlany transformation
performed during compilation is likely to result in furthéeviation from the source
code.

2.4 Pretty Printers

There are tools that are similar to compilers in the sendsetlieg accept source code as
input, but instead of outputting executable code they precwtput in the same language
as that of the input, with the purpose of ensuring that theeagmce of the code follows
certain rules by making modifications as necessary. Terctsassource code formatter
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source code beautifieandpretty printerare all being used to refer to such tools, as there
presently is no single, established term for that purpose.skéll favor the last of these
terms.

Pretty printers are invariably designed to produce outpattis computationally equivalent
to the input, and they are typically used to achieve consigtematting, perhaps because
of a requirement to adhere to a coding standard of some sosimply to make code
easier to read. Indeed, software engineers tend to spend maie time reading rather
than writing code, and thus any solution that makes coderfastread and understand is
likely to help save time.

Pretty printers tend to be configurable, to allow for differéastes in formatting. It is
beyond the scope of this paper to conduct a survey on theablajbretty-printing tools to
determine exactly what code transformations they mightenblit we have come across
tools that do some or all of the following:

e addition and removal of whitespace
e modification and addition of comments

e changing the casing of keywords and identifiers (when thguage is case insensi-
tive)

3 Similarities in Source Code

Before considering how to measure source code similarity tanidentify possible co-
derivatives based on the measurement results, we first baansider what kind of simi-
larity there might be, and which similarities might indieato-derivation. This section lists
some aspects of source code that one may want to considerledieng for similarities,
and the kinds of similarities that one might find when doingNaturally, we cannot cover
everything, since between all conceivable programs amgukges there are any number
of possible similarities to consider.

The reader should note that not all of the similarities cedenerein are applicable to all
languages, due to considerable differences between pnogiray languages.

3.1 Comments

Comment syntax. Does a C++ programmer like to us& commrent */ or// comment
style? If both, which comment syntax is being used for whiglppse?

Comment placement. Where do the comments appear: before a statement; the game i
after a statement; before a function declaration; aftectfon arguments, and before
function body; ...?



Natural language. Are the comments written in English? Is the writer using tieguage
in a somehow unusual way? How many spelling mistakes andrgedital errors
are there?

Formatting style. How are ther characters used in C comments? Is a “standard” template
for function comments being used?

Tags. Are there any tags understood by an APl documentation gemdoml, and if so,
which tool? Which of the supported tags are being used?

Content. What are the comments about? How much text is there?

Some similarity in comments may be due to the use of toolspas1ents are sometimes
created using code generators, along with skeleton codéhéoprogrammer to fill in.
Also, some text editors provide functionality for formagiicomments after they have been
written; the use of such facilities can affect syntax, ptaeat, and formatting style of
comments. There are also pretty printers that can autoatigitigenerate comments with
content derived from the context in which the comment appeauch content could for
instance include tags understood by a documentation genera

3.2 Spacing

In many languages, whitespace can be used relatively ftedlyrmat source code. For
instance, in C whitespace is ignored everywhere apart ftomgditerals, and there thus
can be significant differences between C programmers in #yespacing is used.

Indentation. Are tabs only, spaces only, or both being used for indemaéind how many
of them? Are they being used consistently?

“Tails” (whitespace at the end of a line). How large a portion of lines have tails? How
long are the tails? In what context do tails typically apfear

Empty lines. How large a portion of the lines are empty? How many consee@mpty
lines are there? Where do the empty lines typically appear?

Spaces as separatorsWhere are optional separators being used? E.g.fisrif; ;) or
for (;;)? Isitl,2o0r1, 27? Is more than one space being used as a separator?
Are other whitespace characters being used for the samesa#p

Line breaking. Where are line breaks used? E.g. is there a line break a#éesgbning
bracket of each block? Is each function argument on its omih function defini-
tions? (In some languages line breaks function as statese@atrators, but if they
are optional in the sense that e.g. a semicolon could be uséshd, there may be
differences in their use.)



Similarities in spacing can be introduced when using a ypminter (see Section 2.4) or
a text editor that can do indenting. Especially the lattesecia common, as there are a
number of text editors that in some way support consistesieritation of a number of
languages; however, editors that enforce a particulamiadien style are rare, so people
using the same editor with the same settings can still p@difterently indented code.

3.3 ldentifiers

Name length. Is it si d or Showi nf or mat i onDi al og?

Naming style. E.g. one of the following:

Capital Style

camel Style

CONST_STYLE

ruby_style
_underscorePrefixStyle
i Property

aAr gunment

Leavi ngFuncti onL

Type reference style. Often there is more than one way to refer to the same type. E.g.
isitint* fooorint *foo? Isitchar a[] orchar[] a?

Type modifier usage. How frequent is the use of “non-essential” type modifiersenld-
rations? For instance, in Jawsgnst andfi nal are seldom essential, and mostly
just help in avoiding programming mistakespl ati | e is almost never used, as
synchroni zed is easier to understand and can be used for the same purpose.

3.4 Synonymous Expressions

Unconditional loops. Does the programmer useor (; ;) or whil e(true) or some-
thing else?

Negative conditionals.Isiti f not aorunl ess a?

Incrementing. In C, one can writé ++,i += 1,i =i + 1,0oreven -= -1,i.e.one
can increment a number with many different operators.

Comparisons.if a + 1 == borif a == b - 1?
Blocks. | oop do puts string endorl oop {puts string}?

Conditional assignment. Does the text sap | | = q instead ofp = g unl ess p?
Especially this kind of “advanced” usage is interestingnga@incommon.



3.5 Redundancy

Especially those programmers who are not intimately famnikith a language or the APIs
being used are likely to write some unnecessary code, duettknowing exactly what
each statement does. It takes time to find that informatiom flocumentation, assuming
that the documentation even exists. Thus, it may seem likeod glea to write all of the
desired operations explicitly, even if that might resulsome duplication of computation,
and a negative effect on performance. Below are examplegoafal redundancies that
might result if the programmer chooses that approach.

e Redundant error checks, e.g.:

hject o = new Object();
if (0o ==null) /1 redundant
t hrow new Qut Of MenoryError(); // redundant

e Redundant initialization, e.g.:

TBuf <10> buf;

buf . Zero(); /1 redundant
buf . Append(_L("fo00"));
DoSt uf f (buf) ;

buf. Zero(); /1 redundant
buf . Copy( anot her Buf) ;

e Duplication of functionality built into a statement, e.g.:

if (p) /1 redundant
del ete p;

e Duplication of checks built into an API, e.qg.:

if (timer.IsActive()) // redundant
timer. Cancel ();

The redundancy examples listed above are fairly typical, @nsuch, they may not be a
strong indication of co-derivation. Redundancies thancate accounted for by lack of
knowledge on part of the programmer would be more valuabéecasderivation indicator.
One example of such redundancy is below.

def print_array_el ens(array)
array.sort # has no effect as result not saved
array.each {|elenm puts elent

end



3.6 Error Tolerance

Some programmers care about error tolerance, while sometgmy much attention to it,
and thus there can be considerable differences. Natundilgn differences are common, a
lack of them implies similarity.

e Checking of error values, e.g.:

if (resource. Open() == SUCCESS)
resource. Use();

instead of

resource. Qpen();
resource. Use();

e Robust error handling using a syntax-based exception méeshae.g.:

f 00. open
begi n
foo.do_stuff
ensure
f 0o. cl ose
end

instead of

f 00. open
foo.do_stuff
f 00. cl ose

e Robust error handling using a custom exception mechanigm, e

Foo* foo = new (ELeave) Foo;
Cl eanupSt ack: : PushL(f o00);

f oo- >Construct L();

Cl eanupSt ack: : Pop();

instead of

Foo* foo = new (ELeave) Foo;
f oo- >Construct L();
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3.7

Structure and Ordering

Programming languages have major differences when it ctoribe selection of structural
constructs available to the programmer when attemptinggamze a program in a manner
that helps maintenance. There are constructs that

may not be used to store data nor describe any computatiew;aite static, may
not be instantiated, and are only used to describe othectstas; e.g. a Java
interface

are strictly data structures; may be used to store data, bBytmot describe any
computation; e.g. a €t ruct *

may both contain data and describe computation (typicagirations on the data);
e.g. aJaval ass

purely describe computation, and may not be used to stoee(datept perhaps for
the duration of the computation); e.g. a Java method

Regardless of the differences between such constructshallessnply refer to all of them
asstructural elementsWe shall also consider a source code file as a structuralegliem
and in some cases, a single structural element can consiatltple files (as with a Java
package).

When looking for structural similarities in two programsg would for instance consider:

the average length of a line (in characters)
the average length of a structural element (in charactadsyor lines)

in an enclosing structural element, the average numbeewisitsuch as: other struc-
tural elements, constant declarations, instance varidébbarations, global (non-
instance) variable declarations, or statements

the ordering of items in each enclosing structural elemeng. the ordering of
modules in each file, etc. (it should be noted that in manydaggs it is necessary
to declare identifiers before referring to them, and thatadks ordering to an extent)

the amount of duplicated code; some people do a lot of copyngagsnd some do
next to none; there is likely to be a correlation between Heeae structural element
size and the amount of duplication, @enes(code duplicates) tend to require more
text than references to other structural elements

In some languages (such as LISP) computation and data asérigdishable, as the computation implic-
itly results from the evaluation of data structures; theeere explicit statements commanding the underlying
machine
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Highly dynamic languages such as Ruby may make it difficulb$pect class definitions,

for instance, as the definitions may change at runtime. Wit danguages one might
decide to only consider the syntactic structures appeamisgurce code, instead of entire
definitions.

3.8 Similarities Not Indicating Co-Derivation

As we have discussed, there are many different kinds ofaiityilthat one could attempt to
measure, but it is important to note that not all similargyan indication of co-derivation.

3.8.1 Code Describing Different Functionality

Suppose we have two source code texts that are similar istefrstyle and layout. Further
suppose that those texts have no commonalities in the datangputation expressed by
them, even at the lowest possible level expressible in thguiage, and at least one of the
texts contains no comments. Clearly those texts should eabhsidered co-derivative,
unless we know otherwise. If there is no common functiopalitd no textual similarity
between comments, then there is nothing to indicate thatwbeexts would have been
derived from a common ancestor.

The above example is mostly theoretical in the sense thapfegrams are such that they
have no common code or data at all. However, even in a moristieacenario, it may
be possible (at least for a human) to determine that two progrdescribe more or less
different things, and thus, even if they look similar stijtially, there is no reason to assume
co-derivation.

3.8.2 Generated Code

There are a number of tools that are capable of generatingesoade based on instructions
provided by a programmer. Especially the use of the sodtalteject wizards is a popular
way to start implementing a new software application, as @édmmon for an application
framework to require even the most basic application to @mant a large number of
interfaces. In such cases a wizard can provide the programiitie an application that
does everything the underlying system requires, and thgramamer then simply needs to
customize and add application-specific functionality #® gienerated code.

Typically, code generators are not general-purpose tbatsather they generate code for
a particular purpose. For instance, it could be that one aisesool to generate a skeleton
application, an another one to create a parser for the apiplic configuration file, and
a third one to generate a description of a data structure ligdte application. Thus,
the code generated by such a tool tends to be highly similearins of functionality, not
to mention formatting and commenting. This would indicatederivation even though,
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strictly speaking, two source code texts are no co-derivst pecause they have been
created with the same tool.

4  Similarity Reduction

If one possesses a copy of some existing source code, tieemeaay different reasons why
the copied code might eventually get modified. If and whehhbapens, we can no longer
call that code an exact copy of the original; instead, we bayit has been derived from
the original. Whenever derived code is modified, it is likétat the similarity between

it and the original code gets reduced in the process. In #usa, we discuss some of
the reasons why source code might get modified, and the kindsamges that could be
considered typical for each of those scenarios. This wilidfolly give some idea as to
what kinds of differences one should expect co-derivativdsave.

4.1 Software Evolution

The most common way for source code changes to get introdsi@software evolution.
Such evolution takes place when a system is implemented|admdas its source code
gets revised by programmers due to defect fixes or changmgreznents. Some of the
most common activities performed as software evolves amndielow, and their effect on
source code similarity is discussed in the correspondinticse

Activity Typical source code modifications Section
feature set modification large chunks of code added or redhove 41.1
defect fixing small amounts of code altered 4.1.1
refactoring some code rewritten, large amounts reorgdnize 4.1.2
source code tidying formatting changes, comments addedaaeted 4.1.3

4.1.1 Alteration of Functionality

Most changes made to source code have the aim of in some wagiobahe functionality
of the software. The reason for wanting such a change coukdtber that the software
does not work according to its specification, or that the ifigation has changed.

Source code modifications made for the sole purpose of raidtinctionality typically
involve the addition or removal of code sections (implermgnfunctionality being added
or removed), and small modifications here and there (refeeo the aforementioned
code sections, parameter changes, etc.). In most casesftlostsource code will remain
exactly the same as in the previous revision, and indeedy n&sion control systems take
advantage of this property by merely storing the differenoetween revisions, and not all
of the program text of each revision.
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Changes in source code formatting are typically not madererfairly local, just like
the functionality changes. Many programmers dsé f -like tools to see what changes
have been made between revisions that actually affectituradity, and as wide-scale for-
matting changes would make that more difficult, programraeeffectively discouraged
from making such changes. This is especially true when aorec®ntrol system is being
utilized throughout a project, as that ensures that theimvione wants to compare against
is available.

Thus, to match different revisions of functionally evolgisource code texts, it may well
be enough to use a tool for finding textual differences, amet tio compare the amount
of code that has changed against the amount that has noggpisach should be quite
effective in determining the extent of similarity betwegrotdifferent revisions of a file.

4.1.2 Reorganization

Software evolution typically also involves an increasimgtiire set, and this can easily
lead to increased complexity of program code, especiatlyefrequirement for the added
features was not anticipated when the system was designduken \@bmplexity makes
software prohibitively difficult to maintain, the only afteatives — apart from a complete
reimplementation — are to either to abandon maintenande,refactor the program code.
The purpose of refactoring is to make the program structaseeeto understand, and it in-
volves adding, removing, splitting and merging of programmninterfaces, and organizing
the existing code to reflect the new interfaces.

As refactoring tends to involve code being moved around,gladsibly to different files,
to atool such adi f f the changes can appear far more extensive than they acina]lin
terms of how much of the original code is still there. For tl@ason, file-based detection
of shortest edit distances using insert and delete opagaisonot particularly effective for
assessing similarity, unlike we found in Section 4.1.1.

Structural metrics (cf. Section 5.4) should fare bettgpeemlly if they can detect similar
code across files. However, sometimes refactoring can hale & profound effect that
unless one finds a way to detect similarity in functionalitynay not be possible to notice
enough similarity to identify refactored code as co-ddnea Fortunately, as refactoring
is time consuming, especially larger systems tend to betefed a small portion of the
code at a time, and for some code refactoring may never besege

4.1.3 Tidying

For as long as a software product is released as binary owlytsasource code is accessible
in-house only, one may not be too concerned about the apmeadt the source code.
However, if a decision is made to release in source form, oag wish to ensure that
the code looks professional, and some tidying up of the coalg e in order. This often
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includes changes in indentation and formatting to give theca consistent look and to
improve its readability.

The commenting of source code is particularly importariéf tode is to be used or mod-
ified by others, and is typically given considerable improeats before first release. It
is also common to generate some or all of the APl document&iised on source code
alone, and this is when comments become particularly impgrand may be required to
contain custom directives for the documentation generator

When not preparing for a source release, itis probably ratheommon to make extensive
superficial changes to source code. Still, it does happérhbaoding style of a program
is maodified just to comply with company coding standards erghrsonal preferences of
the programmer. The likelihood of something like this happg is greatly affected by the
personality of the programmer.

Changes in formatting of code could have a very significargaioh on similarity mea-
sures based on the textual equality of lines, for instantgs i§ because it is particularly
effortless to make such changes in a manner that affectga farmber of lines in the
program text. Many text editors have built-in support fornfiatting code in a variety
of programming languages, and standalone pretty printersaeailable as well. Some
similarity measures address this problem by ignoring somalavhitespace characters,
and that is indeed effective, as most formatting tools doadot or remove anything but
whitespace. However, care should be taken here, as white$pactions as a separator
in most programming languages (Fortran being perhaps ttst wadl-known exception),
and indiscriminate removal of all of it could make subsed@ralysis more difficult.

As comments are more or less free-form text, relatively @fesny restrictions imposed by
the source language (the language in which the source coadétan), they tend to contain

more information than programming language expressiotiseo§ame length. A number
of long comments with the same text in two source code filetddoeli considered strongly
indicative that those two files are co-derivative. Howewdth a similarity metric based

on textual comparison of comment texts alone, similarityasuees could be significantly
affected by superficial program text changes. For this reasome similarity measures
ignore them [3, 26], despite of their potentially high vaasesimilarity indicators.

4.2 Porting

The termporting refers to the act of translating software so that it runs onffardnt
(physical or virtual) machine. This might involve one or maf the following activities:

Porting across machine architectures.Especially when software has been written in a
low-level language (such as assembly), or when the softintggdaces more or less
directly with hardware (as in the case of physical deviceais), it may be necessary
to switch to using a different instruction set, make changesemory management,
or otherwise account for differences in the underlying niraelarchitecture.
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Virtual machines are sometimes utilized to protect fromtipgrwork associated
with hardware changes, as they tend to hide the specificeafritlerlying machine
more or less completely.

Porting across operating systemsOperating systems may have differences in filesystem
organization, for instance, and porting software onto edéht system could thus
mean that the software must be changed to look for files frdfardnt locations,
interpret the contents of files differently, use a differset of executables, commu-
nicate with system services with different protocols, etc.

More generally, ported software may need to make use of themsyfacilities dif-
ferently to acquire the same set of functionality as on thec®OS. Sometimes the
required facilities may not even exist on the target platfoand in such a situation
additional implementation work may be required.

Porting across APIs. Sometimes it is necessary to port software for an environnern
does not have all the APIs referred to in the source code. dh sases, one may
wish to replace references to any missing API with refersiceanother API that is
available and also provides the required functionality.

Porting across APIs is always required when porting acrasguages, and often
required when porting between operating systems. In exreases, none of the
APIs used in a program exist for the target OS. For instameeAPIs shipped with
the Symbian Platform are rather unique — apart from a paniplementation of the
standard C library, there are few if any APIs that are avélaib any other platform.

Porting to another GUI toolkit tends to be particularly ldgbas, as in a typical

GUI application most of the code is GUI-related; thus sinitjabetween a ported
application and the original one could be severely reducétl process of switching
between GUI toolkits. Luckily, developers also try to aveigch major tasks, for
instance by not using the “native” toolkit directly, and teesd using a platform-
agnostic GUI API that has been implemented for multiplefptats. Trolltech’s Qt

is a good example of such a toolkit, as it has been implemeoteall of the most

popular desktop platforms, and allows GUIs to be constduftieall those platforms
from the same codebase.

Porting across languages.Translating a program into another language may be required
in situations when no compiler or interpreter for the largpigs available for the
target platform. This situation typically arises when pagtbetween operating sys-
tems, especially if the target OS is relatively new. Theeeaso cases when one
simply wants to switch languages, as the target languagensidered a better tool
for the job. For instance, the text processing capabildfeRuby are far superior to
those of C.

A port into a new language requires considerable rewritamgl,is often written from
scratch, especially if the languages are not syntacticathlar. Thus, while it may
be difficult to detect co-derivation as differences betwiagiguages increase, at the
same time the likelihood of co-derivation should decrease.
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Even when porting into a language with a completely differgyntax, it can be
helpful to base the port on existing source code; some ativdaeping the old
code in comments and writing the new code next to it; if theegpmoblems, one can
check whether the new code actually corresponds to theifunadity specified in the
old code. However, if the languages have been designed falt@gether different
programming paradigm, the structure of the port is likelyp&oso different that the
above approach is not sensible.

A ported piece of software is calledport. Ports are typically produced manually by a
software developer. While there are some tools that asgmtrting between languages and
GUI toolkits, for instance, such tools have typically beesigned for select few porting
tasks, and are useless for a developer faced with a task ¢hat of the available tools
support.

When not porting across languages, it may be feasible to #teepame codebase for all
targets, i.e. to keep support for the source environmernieveliding support for the target
environment. This may take some arranging if there is no itiondl compilation support
builtin in the language, but one can always use a separgteomessor to attain conditional
compilation. Another alternative is to make do without dtindal compilation within
files, and to separate platform-specific parts from platfagnostic parts on the file level,
having the build system choose which source files to use fachwiarget. In any case, if
the original code is kept relatively intact when porting;darivative detection is likely to
be easier.

4.3 Plagiarism Hiding

We definesoftware plagiarismmas an act of taking existing source code, and then reusing
and passing off that code as one’s own, either in modified anadtified form, without
crediting the original author. We further assume that tlagjiplrized code does not come
with a license that permits uncredited reuse.

The above definition is fairly narrow, and does not accounttlie purporting of ideas,
algorithms, or information from existing source code. Heareas we are focused on co-
derivative detection, it makes sense to exclude anythiriglipact reuse of source code
from our definition.

An attempt to hide software plagiarism differs from softevarolution in the sense that in
the former case, similarities are removed intentionallghwthe aim of making it difficult
to notice that plagiarism has taken place. The reason fgigsiam would typically be one
or more of those listed below, with perhaps the general theasg the desire to do less
work than would be required without plagiarism:

1. The plagiarist does not understand the programmingrsystad does not want to
spend the time and effort required to learn it.
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2. The plagiarist is not familiar with the problem he/shewdtisolve with the software
program, or does not know how to solve it, and does not wampd¢ad the time and
effort required to come up with a solution.

3. The plagiarist does not want to spend the time and effquired to write the pro-
gram.

4. The plagiarist feels that it would be stupid or unintaérggsto reinvent the wheel, i.e.
to solve a problem that someone else already has. (It mayhevé¢mat the task of
covering up the plagiarism seems like a more interestinfjesige.)

Of course, it could simply be that a plagiarist does not krtas/mot okay to take someone
else’s code and reuse it without crediting the source, origtaken about the what the
license of the software allows, but we will not consider sgelses here, as plagiarism
hiding then probably will not take place.

When looking at the reasons for plagiarism listed abovesdbimes apparent that in all but
case 4 the plagiarist probably does not understand theapizgil program completely, and
does not want to take the time to gain that understandings Mieians that any plagiarism
hiding is likely to be done so that little understanding o thiorkings of the program is
required, and significant changes affecting the computatiould be risky without that
understanding.

Thus, typically a plagiarist would modify the program texta manner that makes it look
different from the original, while introducing little or nohange in the computation it-
self. Such maodifications can, to an extent, be made in an atemhmanner by utilizing

translation tools or editor functionality, and could fostance involve modifying the for-
matting of the program text, removing comments, renamieglla@entifiers, or replacing

expressions with synonymous ones.

The authors of [26] examined a number of programs, some oflwiiere either actual
plagiarisms by students, or explicitly made plagiarism&cdkding to their findings, the
most common attacks used by plagiarists would appear to be:

e modification of code formatting

e insertion, modification, or deletion of comments

e moving subexpressions into new auxiliary variables, oe viersa

¢ inlining of small methods, or moving parts of existing methdo new ones

e reordering of non-interdependent statements

¢ exploiting mathematical identities (e.g. by replacing 1 with 1 + z, or tan o with
sin o
COS &
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e voluntarily introducing defects by removing or adding duigial statements, or
modifying constants

e adding or removing unused code
The authors of [23] have done a similar study, and they inlvetieve the following attacks
to be common among plagiarizing students:

e changing the layout of the program

e changing the commenting of the program

e changing the names of identifiers

e replacing defined constants with literals and vice versa

e changing the definition order of constants, types and vimsab

e changing the order of procedures and functions

e adding or removing compound statements, empty statemedtgaentheses

e changing the values of literals and defined constants

e changing the number and contents of output statements
Changes in formatting and commenting would seem partiguppular, perhaps due to
being safe in the sense that in most languages (barring s such as Python) they do
not affect computation in any way. If we also consider the flaat pretty-printing tools are
available for a number of languages, and can adjust the ttingaf code and comments
automatically throughout a program, we can conclude tleastyle and layout of programs
are particularly vulnerable. It is quite reasonable to amsthat anyone worried about

getting caught of plagiarism would take the time to at leastthe plagiarized program
through a pretty printer.

Let us now consider the two extremes of attitude that we nfigdtamong plagiarists:

A careless plagiarist might well rely on no one finding the original program to comga
against, thus trying not to cover up his plagiarism at all.

In such a case the plagiarism should be trivial to detect vdoemparing against the
original, unless the plagiarized version had evolved aersbly since the copying
took place.

A super-careful plagiarist would spend almost as much time (or even more) hiding the
plagiarism as it would take to reimplement the whole progfiaom scratch.

In this case it might not be possible to detect any indicatibplagiarism, but per-
haps there comes a point when there is so little of the ofliginde left that no
copyright infringement should any longer be consideredettaling place.
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4.4 Obfuscation

A lot of software contains intellectual property that is silered valuable, whether it is the
code itself, or some information (such as cryptographicskeynbedded within it. Even
if the software is in binary form, the intellectual propedyuld get compromised vige-
verse engineeringOne method of attempting to protect intellectual propedwytained in
a software program is to perforoode obfuscatiorwhich means modification of the pro-
gram in a way that makes the program harder to understandhasalso harder to reverse
engineer. The goal of obfuscation is typically to maximizeseurity without causing a
significant detrimental effect on execution time.

There are a number of obfuscators that do nothing more thrambde the identifiers used
in a program [7]. However, in [9], Collberg et al suggest sfanmations that alter the
control flow of a program, and in [8] they present transfoiore for obscuring data struc-
tures. A combination of such transformations made througa@rogram could potentially
make it very difficult to identify the obscured version as adesivative of the original, as
it could be that very little — apart from the high-level series of the program — would
have been preserved in the transformation. It is difficuliétect such similarity using an
automated tool, and even if that was possible, any simjlésiind could merely imply that
the programs have been implemented to the same specificatitaiming co-derivation

would be hard to justify.

Fortunately, due to the difficulty of comprehending obfusdaprograms, no sensible de-
veloper would attempt to maintain a software product in a@ustated form (obfuscation
is typically only done before each “binary” release; indesthny obfuscators only ac-
cept binary code as input). Therefore, the developer of tbdyzt should also have an
unobfuscated version, which should be used if one wishe®itfmgn co-derivative de-
tection. The story could be different if there were “obfuscs’ that modified code in a
manner that did not make it more difficult to understand. Hmvego our knowledge, such
“obfuscation-hiding obfuscators” do not presently exist.

5 Measuring Similarity

Software similarity measurement can be done on many diffdesels. In this section we
go through methods that evaluate similarity on the file leasetl methods which understand
the syntax and semantics of the source code they are evajuati

5.1 Similarity Measure Properties

We call a similarity measurneleal, when we get the highest possible score when we match
a document with itself [16].
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Due to the nature of the surveyed systems, they operate dno& [@@grams, pairwisely
checking whether either element of a candidate pair is todlasi to the other and thus
considered a plagiarism. If this is the case, the pair is t&led a plagiarism pair. In
order to assess the soundness and completeness of a plagiatiection system, we need
concepts which can describe how well a similarity measuferistioning. Precisionand
recall are widely used metrics for information retrieval systeansy for a given data set
and similarity measure, we could apply these in evaluatiegstmilarity measure [16].

Let us define the total number of programs in the test set tp thee number of plagiarism
pairs in that seg), and the number of programs marked as plagiarized by owrsyst Out
of mmarked pairs, we hawdrue plagiarism pairs. Thaprecisionis defined ag00 xt/m.

It is thus the percentage of correctly positively markedyalasm pairs of all positively
marked pairs.Recallis defined to bel00  ¢/g, thus percentage of correctly positively
marked pairs out of all plagiarism pairs.

In fact, the above measures are more widely known in the fiektatistical testing as
positive predictive valuandsensitivity(of a test in question), respectively. Notice that the
use ofsensitivityas an appropriate measure for the soundness of a similagasune is
appropriate only if the prevalence of plagiarism is highuggioin the target group.

A plagiarism detection system is said to achigezfect discriminationvhen the lowest
similarity value among plagiarism pairs is higher than tighbst among non-plagiarism
pairs [26]. This also means system has both perfect recalparfect precision.

If we want anabsolutesimilarity score, the result must be normalized to a valugveen
0 and 1, where 1 means exactly the same, and 0 means no gsinfil&i. [26] points out
that we can also define a similarity measure to be 1 when adaedpair is not identical,
but the other completely includes the other. All of the systen the literature we have
studied use the former definition.

5.1.1 Goal-Oriented Classification

We should also classify methods that measure softwareagitgibased on their accuracy
in different situations. Some methods may be good at sargdor potential plagiarism
but give inadequate assurance of the result. This kind ohoakst can be calledcreen-
ing methods Other methods may be give high assurance for positiveteesaiinimizing
the risk of blaming the innocent - but perform slowly or missne positive results alto-
gether. These methods can be calisdurance method®epending on the motivation for
plagiarism detection, the method of choice may vary comalulg.

5.2 Fingerprinting

Fingerprinting aims to produce a compact descriptioriingerprint of each file to be
compared. A fingerprint can be produced by selecting sulgstirom a file and running
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a mathematical function on them. The function, typicallitezha hash function, produces
output, which is in the context of file fingerprinting refadreo asminutia[16]. All the
generated minutiae for a particular document together fodacument fingerprint.

There are number of properties we would like a fingerprinspgtem to have [16]. First,
a fingerprint needs to be reproducible; that is, every tim&anginput is processed, the
same result must be obtained. Second, the fingerprint gérgefanction should produce
a uniform distribution of output, and third, output shoule between two bounds. Fourth,
it should be rare that two minutiae share the same outpuh, Fife function should be fast.

The reason for wanting to create fingerprints instead otdireomparing the documents
is efficiency. In the context of fingerprinting, we want to nmze the performance of
comparing one document, called a query document, agaifils. This can be done by
storing only the fingerprints of the files to the database instead of the files themselves.

One thing to note is that the runtime of many of the plagiarkatection systems presented
in Section 8 increases quadratically with the number of ot in the program set. This
is because all programs in the program set are comparedsagaiery other program in

the set. However, with fingerprinting, things increasedimgwith the size of the database.

5.2.1 File Equality with Fingerprinting

Suppose we are looking for similarities from two large seaiitevsystems, each consisting
of hundreds or thousands of source code files, and are orlgesied in whether we find
the same non-empty file in both sets. Say we h&wdiles in the first set, andv in the
second. In a naive solution, we have to makeV comparisons of file contents, which
could take too long to be practical. However, we can queryikbgystem for file sizes, and
use hash values to avoid reading the content of any file maredhce. This way we can
reduce the effective complexity from(M N) to O(M + N), if we assume that anything
not involving content reading is negligible in terms of therall performance.

In other words, we can get better performance when compétaggfor equality by using
fingerprinting over the whole file, see Section 5.2. One nakfbogenerating a fingerprint
for file equality purposes is to hash a whole document intbgae minutia. Obviously,
the length of the hash must then be sufficient in order to noéigee too many collisions.
Another way is to employ an all substrings selection stratednere all non-overlapping
substrings are calculated.

5.2.2 File Similarity with Fingerprinting

Substrings to be hashed can be selected based on stapistipalties or relevant structural
information. The problem is how to select the relevant paitsl the same problem applies
for source code specific attribute-counting systems, waieldiscussed in the next section.
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In short, fingerprinting can considerably speed up the @®oé comparing large sets of
source code files, if we can calculate the fingerprints to tualthse beforehand. The
accuracy of the fingerprinting system depends on which péitse files are selected, and
how similarity is quantified.

5.3 Attribute-Counting Systems

Attribute-counting systems are such that they computedohgrogranm different soft-
ware metrics, so that each program is mapped to a point in-dimensional cartesian
space. The systems then consider sets of programs thabdie i each other to be possi-
ble plagiarisms. [26]

The earliest plagiarism detectors fall into this categdrize very first attribute-counting
metric known to us was Halsteadsftware science metri¢s4], and others followed, with
a larger number of attributes. However, regardless of thebau of attributes, summing
up a metric across the whole program throws away so muchtstaliénformation that
structure-based metrics tend to be superior.

5.4 Structure-Based Systems

There are several approaches for performing comparisasith capable of pinpointing
those parts of two texts that are likely to have the samergrizased on program structure
comparison. In this section we present some of them.

[28] compares structure and attribute-counting systetasoinclusion is that the attribute-
based metrics are typically better with entire files, butgabrt when only a part of a file
has been copied.

5.4.1 Token Sequence Comparison

Roughly, a token sequence based similarity comparisonadathdone in the following
way.

1. Convert text to a token sequence (see Section 6.3)

2. Compare token sequences for similarity, for each sequ@adr, using a string
matching algorithm (see Section 7)

In addition to the string matching algorithm and its parasrgt the token set we want
to generate affects the results obtained. After string hiagcwe need to decide, which
percentage of similarity implies plagiarism (either in aesmning sense or in an assurance
sense). This value is called a cutoff-threshold.

23



Examples of systems utilizing this structural approach #fd>3 [31], JPlag [26].

5.4.2 Token Tree Comparison

A token tree based similarity comparison method consisighty of the following tasks.

1. Convert text to a token tree

2. Compare token trees to determine differences, using arglzation of a string
matching algorithm

A token tree is an abstract syntax tree, which is a result @frsipg phase. See Section 2.2
for detailed discussion on compiler phases.

One of the systems using token tree comparison is descnibd2]. It uses a tree variant
of an LCS algorithm for quantifying the similarity of the tek trees.

5.4.3 Syntax Graph Comparison

There are some papers that talk about comparing syntaxlbesesl on graph algorithms,
which attempt to detect the same or similar graphs, and ddamahy sort of tokenization.

The problem here is what kind of a graph to build — what nod#sbates, arcs, and so
forth to include in it. There appears not to be so much liteaion the topic. Similar
problems are of course faced by all structural systems iredorm or another. Even token
comparison systems need to decide which token set to usexanpe of a system using
syntax graphs is described in [20].

5.5 Information-Based Metrics

Information-based metrics are also based on token sequengearison, but the compar-
ison is not done using a string matching algorithm. In thesérios, a shared information
distance is calculated instead of doing simple string magchOne cannot compare all
subsequences appearing in a token sequence as that wowd &lew. In this particular
sense this approach is weaker than those presented in158&ctio But it can — at least
in principle — consider all the information in a program &ed of just some attributes, so
it has an advantage over attribute-based systems. Theadhgtinformation distance can
also consider information which would be complicated tcetékto account with string
matching based structural systems.

The whole measurement process consists of these steps.
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1. Convert the input text into token sequence

2. Compute shared information distance for each pair bygusampression algorithms
to determine the amount of shared information

[6] describes a system which works as described above. Higste approximate Kol-
mogorov complexity, to determine the amount of mutual infation between two source
code texts. It is not clear exactly how the information dis&can be calculated, nor do
they mention what token set they use.

5.6 Execution Analysis

Malmi et al have used execution analysis to count how mangdistatements of different
types (f, case, whi | e, etc.) get executed when two Pascal programs are run with the
same input [23]. Naturally, this approach only works when twograms accept the same
input.

Execution analysis is problematic to automate, as we nedx table to do at least the
following.

Compile the programs

Know how to run (where is the entry point)

Know what input must be supplied, if any, and where (stdig) fil

Run the programs (possible security risks, runtime incdibitities)

In short, execution analysis seems to be possible autaatigtibut only if we have a re-

stricted domain of applications (i.e. programming assignts). Doing this by hand might
still be very important for forensic approaches in a casedsedsituation. Another weak-
ness resulting from restrictions stated above is that onesisicted to complete runnable
programs. Sometimes one might want to compare only some giprograms with each
other.

5.7 Measuring Similarity Across Languages

As mentioned in Section 4.2, programs written in differembguages could be co-
derivative, as one often takes a program in the source lgegaa the basis for the one
in the desired target language. In this section, we consideterivative detection across
languages. Naturally, when making comparisons acrossiéyes, a lot depends on the
set of languages that are supported.
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If all of the supported languages have a similar syntax, i mell be adequate to generate
token sequences from ASTSs, for instance, and then comparsetijuences. If there are
differences in syntax, but the languages are still conedigtsimilar (say they are all im-
perative object-oriented languages), the same methodt siifjigive satisfactory results,
assuming that the tokens are high-level enough to ignoferdiices in syntax, but contain
information about concepts such as method definitions cations, etc.

In section 2.2, we mentioned that there are compilers thatngl compilation, translate
programs into an intermediate representation intendee telatively independent of the
source language(s) supported by the compiler. If one warntsrmpare programs written
in different languages, the IR form of the programs might bgoad starting point for

generating whatever representation is intended for siityilaomparison. The advantage
of the IR form is that it is abstracted further away from tharse language(s) than ASTs,
while hopefully still remaining reasonably independentted supported target platforms.
An IR form would typically contain less semantic informatithan an AST, however,
which might be considered a significant drawback in someiegimns.

While there are many languages with a similar set of conedigtthe same constructs,
there tend to be few such similarities between languagesiftédreht programming
paradigms. Thus, it is likely to be very hard to get satigfactresults when making
comparisons across languages such as C++ and Prolog. Etegref was some way
to fairly mechanically port a C++ program into Prolog, th@gnammer may not have
used that method of porting. Especially if the programmes Ib@en creative and made
non-systematic, radical changes during the port, it wiklly be very difficult to spot any
significant structural similarity to the original. It migistill be possible to find textual
similarity from comments, for instance, so all hope is nat.lo

6 Source Code Transformations

In this section we cover a selection of transformationsqguaréd on source code that have
been described in literature. We definsaurce code transformatioas an operation that
translates source code into some other form, regardleskather the target form is source
code. If we want to emphasize that we are referring to a sarmde transformation that
also results in source code, we may use the wrarce-to-source transformationstead.

6.1 About Implementing Transformers

Compiler technology has been researched for decades, @a ifairly mature area of
computer science. As constructing a compiler involves yapgltechniques that allow
one to both interpret computer programs and to transforrmtimto a different form, it
is clear that many of the techniques designed for compillsis lzave applications when
transforming source code into a form designed to facilisit@larity comparison.
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Possibly due to the complexity of some programming langsiageny of those imple-

menting a tool for analyzing source code similarity haveedptio base their implemen-
tation on an existing compiler, rather than face the taskritfrg a lexical, syntactic, or

semantic analyzer for the language(s) they wish their mgupport. As some compilers
have multiple front ends, it may even be possible to find alsiogmpiler that supports all
of the languages one wants the similarity analyzer to ac®ptput.

In Section 2.2, we listed the phases that a compilation ggotgically has. In the rest
of this section we shall consider some of the tasks that socode similarity analysis
might entail, and doing so, we shall also consider theirtiglato the compilation phases
presented earlier. Giving some thought to implementatoimportant, as a method that
would produce good results in theory is of little practicakuf creating a usable imple-
mentation is infeasible.

6.2 Standard Preprocessing

Some programming languages assume the use of a preprodessostance, it would be
inconvenient to write a large system in C without the abitiy#i ncl ude declarations
from other source files or tadef i ne constants using preprocessor directives. (Note that
we are using the word directive as a catch-all term for alppyeessor-recognized state-
ments and expressions, including macro definitions andeedes.)

Depending on the preprocessor language and the "main"estamguage and their inter-
action, it may or may not be feasible to make the "preprogésticectives an integral
part of the source language, which would facilitate sencahtinalysis by a compiler. If

it is infeasible, then realistically speaking the prepssiteg has to be done as a separate
compilation phase, or perhaps integrated as a part of thealeanalysis phase. This is
unfortunate as some information then is lost before the s@o@h analysis phase; espe-
cially macros tend to have a higher abstraction level thair #xpanded form. Consider
the following example:

Listing 1: Code with preprocessor macros.

#defi ne FI RE_BUTTON_MASK 0x10
#define 1S _FIR N X) (x&FI RE_BUTTON MASK)
#defi ne MAX_NUM CONTROLLERS 4

for (int i=0; i<MAX_NUM CONTROLLERS; i++) {
if (IS FIRKNG controller[i]))
fire();
br eak;

Listing 2: Code without macros.
for (int i=0; i<4; i++) {
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if (controller[i] & 0x10) {
fire();
br eak;

}

The former is easier to understand semantically, while @ I#iter the computation is
shown more explicitly. Thus, if we want to compare compotatithe comparison is easier
after preprocessing. On the other hand, if we are more stegen semantics, then it would
be better to be able to compare the similarity of source cexls without preprocessing,
but that may prove difficult, and compromises may be required

When one wants to fully parse source code, it is likely to lveetesier to preprocess than
not, at least in case of languages such as C and C++. Fordgestdre CCHECK tool
described in [23] fully parses the C code given as input, enddvelopers did opt to use a
C preprocessor while transforming programs into the foredus comparisons.

Problems with parsing non-preprocessed code have beahtige®me of those developers
implementing tools for generating APl documentation digefrom code, because API
documentation is meant to explain the meaning of an API, aodld preferably contain
constants and functions that are meant to be public, evereyf have been defined as
preprocessor macros. A close look at tools such as DoxygEnnfiight provide more
insight into this matter, but we shall leave such detailsoneythe scope of this paper.

6.3 Tokenization

With structural similarity metrics (see Section 5.4), itsiendard practice to transform
source code to a token sequence before comparison. Sedrsed similarity measure-
ment tools such as JPlag [26], YAP3 [31], and dup [3] all tokenheir input.

6.3.1 Motivation

One of the reasons for tokenizing source code texts befargarnson is that the com-
parison is performed using a string matching algorithm, #redrunning time of those
algorithms is typically greatly affected by the input siteakes far longer to compare two
1000-character programs character by character thands teetkcompare two 100-token
programs token by token. Each token can be given a singlgantelue, just like each
character in practice is, and thus comparing sequencesafens can be just as fast as
comparing sequences ofcharacters.

At least in the context of plagiarism detection, many alseoadte tokenization as a way
to discard information that is easy change, and leave besontething that captures the
"essence" of a program. If we wanted perfect discriminatiodetecting programs that
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have the same essence, we would have to be able to find a tdakeatseaptures all of the
essence of a given program and nothing else.

Depending on the definition for the term program essencegyton may not be possible to
find such an ideal token set, but in this section we shall asgtiat for methods that yield

the best results in co-derivative detection, the definitimuld be such that compromises
between recall and precision will have to be made.

6.3.2 Considerations for Token Set Selection

There would not appear to be clear guidelines for choosirakent set in literature. The

process appears to be along the lines of making educatedagueswhat might be good
choices, and then measuring and adjusting until one geisalptesults with a data set.
With this approach a lot depends on the data set; it shoularge land representative of
real-world data that is to be measured with the tool. Alsthaalgh measuring with good
data is an effective way to determine a suitable minimum mkgogth, it is not possible

to perform measurements with all conceivable token sets.

When selecting the token sets to try, we should decide whétleepurpose of the token
sequence comparison is to act as an assurance method oenisgrmethod. If we are
basing our similarity measurement solely on a token sequeomparison method, then
we should probably clearly favor precision over recall toidvalse positives. In general,
we can improve precision by altering the parameters of ouhatkso that one or both of
the following becomes true:

e we have tokens generated from smaller source code elenamdtss the number of
tokens being emitted then gets higher, we also increaseitiimom match length

e we increase the number of distinct tokens in the token seétdunot decrease the
minimum match length

We are basing the above guidelines on the assumption thaitéhtsequences are made
longer, then the minimum match length should be longer aktavathieve similar results,
and that the opposite is true if sequences are made shohneregults given in [26] would
appear to be in line with these assumptions. However, appachanges in the minimum
match length will not have a major effect on the results wsibe length is far from optimal.

To improve recall, the above adjustments apply in the opgo€ine might be required to
make such adjustments if one was using token sequence mghia screening method,
and getting too many false negatives. We do feel that tokgnesee matching is best
suited as a heuristic for efficiently selecting code segegnhat should be subjected to
further, more accurate analysis.

If one does require results that are as accurate as posssiolg, sequence matching alone,
it may be necessary to complicate matters by foregoing teefia fixed parameter set for
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all input. If one were to adjust both the token set and themmimn match length according
to the nature of the input, it is reasonable to expect betwirlts than with parameters mea-
sured to be optimal in the average case, especially if treelsEing measured is atypical.

6.3.3 Example Tokens

The tokens produced for similarity measurement purposesarto be confused with those
produced internally by a compiler for the source languagey are typically different.

For instance, consider the Java statement:

/1 count the anpunt of standard i nput
while (Systemin.read() !'= -1)
count ++;

While a typical compiler would produce a token sequence sisch

WHILE LPAREN IDENTIFIER PERIOD IDENTIFIER PERIOD IDENTIFER LPAREN
RPAREN NEQ NUMBER RPAREN IDENTIFIER INC SEMICOLON

JPlag instead produces the sequence [26]:
APPLY BEGINWHILE ASSIGN ENDWHILE

The latter sequence is considerably more high-level tharidimer, and discards a lot of
information, such as the nature of the assignment (sontethimeing incremented by one).
One commonality between both sequences is that neithesiosrany information regard-
ing comments or the amount of whitespace that originallyeappd between tokens, and
that in itself can be useful if easy-to-change informat®ioi be ignored in comparisons.

For an example of a full token set used in an existing applinatee [25], which gives
JPlag’s default token set for Java, along with some measntnof their relative frequen-
cies; the set contains 40 tokens, and JPlag uses the mininatioh tength of 9 as standard.

6.3.4 Token Sequence Generation

The choice of the token set affects the amount of work inwlvetokenization, as with
some tokens the choice of the next token to emit requires tarbetderstanding of the
source text than with others. Below we discuss the procegertdrating token sequences,
in the order of exceeding difficulty according to the typelaf token set.

Lexical tokens. It is possible to use tokens such that it takes little (if akiypwledge of
the context of a source text to choose the ones to emit. Ikihi of a "low-level”
token set is being used, it should be possible to generatieaifer with a lexical
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analyzer generator tool such as Lex. Many compilers impiertieir tokenizer in
the same way.

The use of lexical tokens makes it easier to implement a fekgnbut this ease
comes with the drawback of the tokens having less semantiecb

In Section 6.3.3 we gave a sample of a token sequence that begienerated by
JPlag from Java code. However, JPlag’'s C/C++ token set imscdased, and thus
it cannot include tokens such as BEGINWHILE, ENDWHILE, BEMGILASS, etc.
Such discriminations are all replaced by just OPEN_BRACEDLOSE_BRACE.
Complex tokens such as APPLY (for function calls) do not oattall; parenthesis
tokens are used instead. [25]

Syntactic tokens. Let us now move a step higher in abstraction than lexicalrtskelo
know whether the charactefsand} should correspond to the tokens BEGIN-
WHILE and ENDWHILE, we must know whether they were precedgdavhatever
else is required for constituting a valdhi | e statement. It is the purpose of a syn-
tactic analyzer to construct an AST that contains suchméion, and a viable way
of creating such an analyzer is to use a parser generatoasuécc.

The Java version of JPlag is an example of a tool that useadimtokens; all of
its 40 tokens can be generated based on the informationigedta a syntax tree.
We do not know why JPlag does not parse C and C++ code fullywbiguspect the
reason might be either preprocessing or a more difficult gram

Semantic tokens. Let us now consider tokens that contain even more semantfoama-
tion than those that a syntactic analyzer could generateintance, consider the
Java statement:

count = 1;

A syntactic analyzer would be able to determine that the alstatement is an as-
signment statement; however, syntax analysis cannotdellhether we are assign-
ing abyte, anint, al ong, or afl oat. To know which implicit type conver-
sion (if any) must be applied to thent literal 1, we must know the type of the
variablecount. Thus, if we want to use tokens such as BYTE_ASSIGNMENT,
INT_ASSIGNMENT, etc., mere syntactic analysis is inadegud._ikewise, if we
want to distinguish between local, instance, and clasabkes, we must know how
the variablecount currently in the assignment scope was declared.

As mentioned in Section 2.2, variable references are tifpiaasociated with vari-
able declarations during the semantic analysis phase, ichvéhso-calledsymbol
tableis constructed. If type information is required by a tokenizone could con-
sider taking an existing compiler, and adding a phase dfersemantic analysis
during which the tokens are emitted.
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6.3.5 Opcode Sequences

A special case of a token set is one whose tokens map onesttean instruction set of
a machine. It is worth considering this case separately, iasould perhaps allow us to
more closely compare the computation that is performed loygsegrams. However, the
problem here is choosing how to translate a program intoeastrof instructions. For
instance, consider the following Java source code:

count += 10;

We could translate the above code to either one of the fafligunstruction sequences:

iload 1 ; push count onto stack

bi push 10 ; push int 10 onto stack

i add ; add the two integers
istore 1 ; store the result in count
bi push 10 ; push int 10 onto stack
iload 1 ; push count onto stack

i add ; add the two integers
istore 1 ; store the result in count

We would also attain the correct result (i.e. code that imeee the value of local vari-
ablecount by 10) with less straightforward code, such as subtractwegvalue -10 from
count , and needless to say, with a longer program we would havereeea alternatives
on how to emit the instructions for it. However, with souremduages that are so low
level that they already specify the instructions and theileq we do not need to choose
the instruction sequence ourselves. An example of suchgaidaye is TCL2.

In [13], Haikala describes how, for the purpose of analyzinggram similarity, he trans-
lated TCL programs into operation code (opcode) sequemugsto the primitivity of the
source language, all that was necessary to do this was tgsabkwait the opcodes fully in
upper case, and to leave out any other parts of the instns;tas well as spaces, tabs, and
comments. After translation, the common opcode subsegsarfdength 4 or more were
then located, and statistics collected to help in estahbsthe likelihood of plagiarism.

Apparently the above method was reasonably effective, aatamatically found most
of the similar sequences that had been found manually byhan@arty. However, the
comparison of opcode sequences is unlikely to be as eféeatsolution generally, for two
reasons:

1. Most programs today are written in high-level languages,with them it is not clear
how to generate the opcode sequences for optimal resultegapgsm detection.
This is a problem in particular if we wish to compare sourceecto object code.

2\We are not talking about Tcl, the more widely used high-lesegipting language.
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2. TCL is unusual in the sense that it is difficult to reordestinctions, due to relative
jump instructions. This naturally helps in plagiarism @titen, as reordering should
be less frequent than in cases where absolute jump addeessesed.

6.4 Comment Removal

A number of source code similarity tools ignore comments wbemparing texts. As
the textual content of comments typically does not confoonthe syntax of the source
language, it does not make sense to attempt to parse thent@uateording to the rules
of the source language. Thus, it makes sense to filter consnoentalready before the
syntactic analysis, in the lexical analysis phase. If theyusd be needed for some purpose,
each comment can be stored into a single token.

One should note, however, that in some languages it is pegsitwrite comments that

cannot be identified as comments based on lexical analysie aFor instance, Ruby and
Python do not have explicit multi-line comments (such as¢hia C++), and it is common

to use multi-line strings instead; in both languages, statés consisting only of a single
string literal are legal, but such statements have no effiaetn not being used as return
values, and may in those cases be considered equivalentrimeots. However, such

"comments" are probably best detected in the syntactig/aisgbhase.

6.5 Code Canonization

In the context of source code, we use the teanonical formas given in Definition 6.1.
Furthermore, we defineanonizationas a source-to-source transformation that transforms
a given source code text into its canonical form. Canoropathay well be essential in
some source code analysis applications, and has been usestémce in [23] and [27].

Definition 6.1 Let P = {p1,...,pn } be the set of all source code texts that are equivalent
in a certain respect. Let there also be a single textthat has been previously agreed to
be representative of all elementsih ThenVp; € P, p¢ is the canonical form gp;. If the
canonical form is expressed in the source language, thatditianally holds thaps € P.

6.5.1 Motivation

One of the main applications of canonization is facilitgtstraightforward comparisons,
and that is also our interest in it here. When comparing tvegm@ms, we might wish to
transform both of them into their canonical forms beforenda@ome kind of a comparison
between them. If all we wish to do is determine whether twogpams are equivalent
in a certain respect, say whether they are semanticallyalgat, converting them into
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their semantically equivalent canonical forms, and themmaring the results character-
by-character is enough to establish equivalence. Forrinsteconsider the following two
C++ functions, which are semantically equivalent:

i nt one(Obj & obj)

{
obj.value = 1;
return obj.val ue;
}
i nt one(Obj & obj)
{
(&obj)->val ue = 1;
return *&obj . val ue;
}

In the case of the above two programs, a character-by-deare@mparison indicates that
the functions are different. However, suppose that we densi b as the canonical form
of (&a) - >b, anda as the canonical form of&a, and we then canonize both functions.
The canonization yields textually identical texts.

If it were possible to create a perfect canonizer for somguage, i.e. a tool that would
transform any program in that language into a form into whacdly other semantically
equivalent program would also be transformed into, thendtilel be trivial to write a

routine for comparing canonical forms in linear time to detime whether any two pro-
grams in the language have the same semantics. Such asolatidd also yield perfect
discrimination. Unfortunately, it is unrealistic to expég attain perfect canonization for
a typical generic-purpose programming language, but egplorrectly canonization can
still be used in many cases to improve recall without a rédndh assurance.

6.5.2 Semantic vs Computational Equivalence

While itis fairly easy to determine whether a certain sowade text is semantically equiv-
alent to another one, referring to the programming langspgeification as necessary, it
is good to keep in mind that semantic equivalence does nayalwnply computational
equivalence. One often needs to resort to guessing aboydutational equivalence, as a
lot depends on the compiler being used and the optimizatigresforms on the code.

For instance, most Java compilers probably tfeat( ; ; ) andwhi | e(true) as equiva-
lent expressions in the sense that exactly the same objéetveould be emitted for them.
However, this is not to say that there could not be a comgilat would produce differ-
ing code. Thus, one should generally be prepared to accegiuational changes when
making source-to-source transformations intended to taiairexisting semantics. Even
merely reordering declarations (and not touching any siatds) could affect computa-
tion. Consider the following C snippets, for instance:

int f()
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int b, a;
a = fa();
b = fb(a);
return fc(a, b);
}
int f()
{
int a, b
a = fa();
b =1fb(a);
return fc(a, b);
}

In the latter snippet the local variables have been placeahialphabetical order. This is
likely to affect the order in which the data appears in thelsteame, if they are placed on
stack at all, and register assignments might also be affe@tee functions will still return
the same value and have the same side effects (if any), et ey be differences in the
way they get executed by a machine.

6.5.3 Canonical Style and Commenting

Pretty printers are probably the most common canonizergy TWere discussed in Sec-
tion 2.4, and could be used attain canonical formatting whsed with certain known

settings. The capabilities of pretty printers are not nemely limited to modifying spac-

ing to attain a uniform indentation and delimiter usage,@ases pretty printers also alter
casing of identifiers, for instance. Even when a pretty prim not powerful enough to
perform the desired transformation, it might still be a gstatting point for implementing

the required canonizer.

Some pretty printers may be capable enough to enforce om#gntax and formatting and
placement of comments, which should ensure that only cortanveith different content
result in a different canonical representation. Howevepethding on the application it
might be desirable not to include comments in the canonggaksentation, and have them
removed altogether as suggested in Section 6.4.

6.5.4 Example Canonizations

There are numerous canonizations that one could conceie tigpical general-purpose
programming language, each canonizing some aspect of dlediceome respect. It would
be futile to attempt to give an exhaustive list, but below e gome examples, most taken
from existing literature.
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Single statement blocks.In C, for instance, the following two code snippets have the
same semantics.

it (a()) { b(); } else { c(); }
if (a()) b(): else c();

We might decide that the canonical form{ofo(); } isb(); i.e. thatthe canonical
form of a block containing a single statement is the singleestent contained in the
block.

Multi-variable declarations. In C, one may declare multiple variables of the same type
with a single declaration as follows:
int a, b, c;
Before comparing program pairs, CCHECK [23] would transfdahe above decla-
ration into the following semantically and computatiogaduivalent form:

int a; int b; int c;

According to [23], CCHECK also performs the following trémsnations on appli-
cable pointer expressions:

Operand removak a- >b becomeg *a. b) 3
e (&a)->b becomes. b

Separating initializations from declarations. CCHECK replaces initializations in vari-
able declarations by assignment statements after vamgalarations [23]. For in-
stancej nt a = 0; would be replaced withnt a; a = 0;. This kind of canon-
ization should increase the likelihood of two variable deations of the same name
and type having the same canonical representation.

For more canonization ideas, refer to Section 3.4, whicbudises synonymous expres-
sions; each synonym could perhaps be replaced with an égpiivaanonical expression.

7 String Matching Algorithms

In order to compare two pieces of source code, we need digmito do the comparison
on a computer. Such algorithms would need to be able to exfinedifferences between
two pieces to be compared with some resolution. It is tritdatonclude whether two
pieces are exactly the same; we would just do a bit-by-bitpamon of the pieces. This

3The reader may notice thét a. b) , unlike (*a) . b is not valid C code (assuming thatis a pointer),
but as CCHECK expresses its canonical forms in a custom &geguhere is no requirement to produce valid
C expressions.
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is what computers do best, detect and report even minoreiftes. What we would like
to do here, is to get some kind of an idea of how similar pie¢es®orce code are, even if
they are not exactly the same.

When we are producing a similarity score (between 0 and 1)have to be using some
metric. We must thus be able to measure the distance betlvedwd entities somehow.
Defining the exact properties of this metric intelligentéycrucial in order to have mean-
ingful results. In this survey, we have previously lookedhathods of transforming source
code to forms in which unwanted differences are removedhiggection, we turn to the
problem of quantifying the differences between such ti@amséd codes.

Generally, comparing two pieces of transformed source waitieeach other can be looked
as a comparison of two strings. One meaningful way of gugntfthe similarity between
two “plain” strings is to find a longest common subsequencéoAgest Common Subse-
quence or LCS is a string that is a subsequence of both ofringstand is no shorter than
any other such sequence. For example, “striper” and “tipave an LCS of “tier”.

We can now take a crucial step in quantifying the similarityweo strings. By defining the
similarity score as 1 if the strings are exactly the same eriring completely includes
the other we get a useful metric. By dividing the longest camrsubstring with the length
of the longer string, we get another often used metric [26]e &dvantage with the first
definition is it returns 1 if and only if the files are exacthethame. Which property — the
former or the latter — is more suitable, depends on the e i.e. whether we want to
consider primarily whole pieces of software or include magelusions also. Naturally,
the choice is also affected by the motivation to construttiegia screening method or an
assurance method.

7.1 Evolution in String Matching

The wide area of string and sequence matching, having apiplis in computer science,
computational biology and speech recognition, is coletyi known as sequence analy-
sis [5].

Many of the currently popular string matching algorithme éased on a common ap-
proach called sparse dynamic programming [5]. The first L@ @ach to use sparse
dynamic programming was Hunt-Szymanski [17]. Since thgimal Hunt-Szymanski the
algorithms have advanced significantly and depending ochwberformance criteria are
considered most important, there are a variety of choiche.rlinning time of all dynamic
programming based algorithms is shown tabi@?) [21], wheren is the size of the input.

GNU di f f uses the algorithm described in [24]. GNU diff has a runningetof O(nd)
where d is the size of the minimal edit script. In the contdxtiof f , it is important that the
minimal edit script is found in the process and that the migrapace grows only linearly.
This makes versioning and patching of different versionaugfe text files practical. GNU
di f f uses a dynamic programming solution for the LCS.
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Let us emphasize, the Longest Common Subsequence proble@tas a strictly defined
computational problemLC'S(z, y) of two stringsz andy is defined in the following way.

1. Itis a subsequence of bathandy

2. Itis as long as any such sequence

The LCS problem has a close relation with a Minimal Edit Ssriproblem. If the al-
lowable operations are insertion and deletion of charadees indi f f ), the minimal edit
script problem (what operations are required to transfora text into another) is com-
putationally equivalent to finding the longest common sghsece of two strings [4]. In
fact, it can be shown that a distangdetweenz andy (in the edit script sense) is always
d(z,y) = |o] + [y| = 2« [LCS(z,y)| [1].

7.2 Parameterized LCS

Parameterized LCS is a reconstruction of the original LGsblem. The idea is to allow
not only insertion and deletion of characters, but alsoesyatic replacements.

In practice, changing texts includes not only insertiord @eletions but also replacements.
Thus, the notion of edit distance is extended to allow alsbal substitutions via param-

eterized match [3, 4]. For example, strings “Supra supresupma suprenum supra” and
“Supra fword supra fword supra” is considered a perfect mateder a parameterized

match, as the substring “suprenum” has been globally reglaagth the substring “fword”.

7.3 Heckel

Heckel's string comparison algorithm [15] is able to takimiaccount moved blocks. The
running time is also linear({(n)), which is very efficient in the field of string match-
ing. However, Heckel’s algorithm is less suitable for oued® i.e. the detection of
co-derivative source code, as it off-syncs badly in casesddid lines of text. Adding

unnecessary lines, statements or declarations, for exam@omething that is easy for a
plagiarists to do.

7.4 RKR-GST

Two of the surveyed plagiarism detection systems — namelp3(f81] and JPlag [26] —
use a novel approach called Running Karp-Rabin GreedydSTilimg (RKR-GST) [30]. It
is also able to take into account moved blocks. Althoughstdavorst case complexity of
O(n?), the experimentally derived complexity in a certain bidtad application is shown
to be O(n'!2). Using minimum match length of 3 a complexity 6f(n%) has been
achieved.
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In RKR-GST we are in effect tiling a longer sequence with theaker one and trying
to produce a maximal cover. A minimum match length is a patarmfer the matching
algorithm specifying how long matches must at least be tacbe@ed. Using a minimum
match length of 2, in the the example above, we would have LIC8rY since at least
two consecutive characters would need to appear in bothgstifior the matching to be
triggered.

The minimum match length has been determined empiricaliyhfe surveyed plagiarism
detection systems. Strong caution is advised here, sino@uiating this parameter leads
to significantly different quantitative results. In [26]s$tnoted, that the results do not vary
very easily if minimum match length is changed somewhat {say 3 to 5 for example).
This reasoning is backed up with some amount of real worle&exgnts. However, this
still does not change the fact that there is no easily detexchinatural value for a minimum
match length. Itis thus possible to manipulate results lmngmg this parameter. The best
motivation for selecting a minimum match length we have car®ss during this survey
is the following: longer matches are preferable to shorspae they are more likely reflect
significant similarities rather than chance similariti@®]f

8 Existing Technologies

In this section we go through some of the existing plagiargatection tools, including
tools that were not designed specifically for the purposeetdéating plagiarisms, but can
be applied for that purpose.

8.1 Donaldson et al System

Donaldson et al system [18] is a hybrid system utilizing betthibute counting and struc-
tural analysis for Fortran programs. The system’s attelmatunting phase counts the total
number of the following attributes.

e Variables

Subprograms

Input statements

Conditional statements

Loop statements

Assignment statements

Calls to subprograms
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Since attribute counting systems are considered infe2®}; jt is more interesting that this
is the first structural metrics based plagiarism detecticatesn we have been able to find.
It is instructive to consider the details of the earliestaysutilizing this approach.

Structural analysis consists of a scanner tokenizingreés. Some attempt is made to
mitigate actions of the plagiarists by compressing theltiagutoken string. In practice,
this means that sequences of identical contiguous token®placed with one occurrence
of that specific token. This means that splitting statemematsid not affect the resulting
token sequences.

The analysis phase is a straightforward token per token adsgm, which can only report
exact matches of the two token sequences. It is noted thaistedfGOT O statements
could easily confuse the used structural analysis.

8.2 Accuse

Accuse is an attribute counting system for detecting ptegrain Pascal programs. It is
stated in [12] that efficiency was the primary reason for livagp this approach instead of
a more involved structural analysis.

The paper presents a correlation scheme for judging whptagirarism has occurred. The
correlation scheme is scaled with a group of 43 programsedbontributions were known
to be a result of team work. The parameters of the correlaaheme of Accuse were
scaled so that these three programs ended up judged astedspieglagiarism. The anal-
ysis in this paper is not particularly thorough; it seemsitaite counting is more of an
experiment.

8.3 Plague

Plague is one of the first plagiarism detection systems ustingtural metrics instead of
attribute counting. In [29] attribute counting systems atdictural metrics systems are
— to our knowledge — compared comprehensively for the finst tiThe author of Plague
argues convincingly, based on measurements, that aérdmunting systems are not able
to achieve sufficient recall to be used as a screening metiodh of the current terminol-
ogy and concepts used to evaluate efficiency of plagiarigectien systems are from [29].
Most notably, the key concepts of precision and recall, exabntext cf plagiarism detec-
tion, originate from the author of Plague.

Plague operates in 3 stages. The first phase extracts a pregrantrol structure into a
proprietary format, which is then used for a pairwise congoer. The purpose of this phase
is to select a limited number of pairs for later stages. That fihase has an intentionally
low precision in the hope of finding all or most of the esséntiatches. To defeat this
stage, a plagiarist would need to make his copy resemble sthee submission more
than the original. This phase is thus a first phase of a sergenethod in our terminology.

40



The second phase is designed to have high precision. Theepsdased on parsing the
programs in question and some additional modifications vtiscard superficial changes.
Procedures are inlined and ordered by a depth-first travefshe calling graph. In our
terminology, this preprocessing constitutes a first ph&s@ assurance method.

The third phase is the usual LCS comparison phase, wherdigtbthken sequences are
compared. Plague also offers Heckel's algorithm [15] asptaoement for the usual dy-
namic LCS. The use of Heckel, instead of the usual order pneselL.CS, gives the ad-
vantage of taking into account relocated blocks of code.

8.4 PAHTA and CCHECK

PAHTA and CCHECK [23] are companion programs from the santiecas. We will first
go through PAHTA and then point out relevant differences ®GHECK. One of the main
distinction between PAHTA and CCHECK is that the former @pes on Pascal programs,
while the latter inspects C programs.

PAHTA is a hybrid system including both attribute countingdastructural metrics for

Pascal programs. It is interesting that PAHTA also doesrd tlype of analysis, namely

execution analysis. It is hypothesized that this will gigtér results than only using one
of the approaches. PAHTA does full parsing and does not nsglsiLCS matching for a

linear token stream as many other systems do. Instead ii@sanith an Abstract Syntax
Tree of the program under analysis. The exact algorithmdorgaring ASTs is not given.

We consider it an open problem to evaluate, whether usih@&il's is more accurate than
using linear token stream with LCS matching.

Execution analysis is done by interpreting the aforemeetio AST. The system then
counts how many times each statement type is executed faea giput. It is of course
in general hard to give predefined input, as the method oftidppends on the type of
program and its user interface. It is mentioned that thisotsanproblem for well defined
simple course exercises used as a basis in [23].

An interesting result from the authors of PAHTA is that ak tiised methods failed at least
once, but in none of the cases all methods failed at the san®e i his would seem to
suggest that a good screening system would utilize all theeafentioned methods. This
would need further independent verification. The simplecidience could well explain
the anecdotal evidence in [23].

CHECK is mostly the same as PAHTA. The structural analysie dbes full parsing, but
before analysis the code is normalized (canonized) to nteke&dmparison itself easier.
The main reason for this is the richness of the C languageoutidvbe more burdensome
not to do the normalization. PAHTA does not do execution ysisl
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8.5 Dup

Dup [3] is not a plagiarism detection tool per se. It is meantaool for maintaining
large software systems and it can detect duplication anddwgdication of code inside a
given software. The duplication of entire fragments of cedmetimes happens inside a
software system, because of factors quite similar to thosetioned in Section 3.5. The
redundant and perhaps minorly modified code resulting frggrogrammers’ cut & paste
attitude makes the program larger, more complex and thue difficult to maintain.

Dup has been tested using several millions of lines of pribolucode. The level of du-
plication that the authors found was quite big: A system with million lines of code,
605 000 lines after comment and whitespace removal was ftuhdve approximately
20% code duplication of which an estimated 13% could be remhovt is worth noting
that the studied system did not have machine-generated ddus gives assurance that
identical unnecessary duplication of functionality in tdistinct systems may be an indi-
cation of co-derivation, as we noted in Section 4.

Dup does both exact matching per line and efficient parataetematching per line. For
our purposes parameterized matchingpematchingis interesting, since it can identify
code segments as essentially the same even though theydmvenodified superficially.
Two sections of code are said to be a p-match if there is omeofunction that maps
parameters from one section onto a set of parameters inltlee g¢ction. Dup considers
identifiers, constants, field names and macro names as garame

Efficient p-matching is achieved by generating p-stringdwie help of a lexical analyzer.
A p-string is a string where both parameters and their posis included. It is a result of
concatenating both non-parameter symbols and parametdrady. It is worth noting that
only lexical analysis — not full parsing — is performed.

Dup uses a data structure callearameterized suffix treie@ do the comparison efficiently.
Overall running time has been found linear even though wease complexity i€ (n?).

8.6 YAP3

YAP3 [31] is a structure metric system, and as the name impiigs a third version of
a program from the same author. All the versions work in twaggs. In the first phase,
source texts are used to generate token sequences (tdl@nizarhe second phase is
a comparison phase. Here, all the token sequences undstigat®n are compared to
produce a quantitative estimate of their similarity forteaair.

Basically the first phase abstracts and normalizes the sptihat the comparison phase
can achieve more meaningful results. This phase is mostiyasiin all versions of YAP.
The transformations performed are the following.

e Comments and string constants are removed
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Uppercase letters are lowercased

Synonymous functions are normalized (esgr ncnp is transformed tat r cnp)

Functions are reordered in to their calling order

The first call to a function is expanded and the subsequel# @@ replaced by a
generic function token (FUN)

All tokens not in the target language lexicon are removed

One of the main differences in the first phase of YAP3, conpptoearlier versions, is that
it produces numerical tokens instead of string tokens.

The evolution of YAP has concentrated on the comparison @ha®\P1 used UNIX
sdi f f inthe comparison, which uses dynamic programming to sol¥8 lwhereas YAP2
used Heckel’s algorithm in the second phase. Finally, tmeparison phase of YAP3 uses
RKR-GST.

YAP3 does not do a full parse of the target language. For #asaon, it is more easily
modified to support new languages, even those with an unkrommal grammar. (As
an example, a version for the English language has beenedeyid his approach also
makes the resulting analyzer faster. Still, not doing agalise means that some semantic
information in the analyzed programs worth taking into actanight not get extracted.

8.7 PDiff

PDiff [4] is a parameterized version of the LCS solution, #@nslthus not a fully functional
plagiarism detection system. It could, for example, sesva generic back end for a system
detecting co-derivative source code.

PDiff solves a parameterized version of the edit distanoblpm. In practice, this means
that parts of the strings under comparison are considerethtoh, even if there are sys-
tematic replacements. Parameterized match models weliragaiy of source code text,
which has been cut&pasted to a different context. The dlyorin this PDiff is the same
as that used in dup [3]. This publication, however, proves flarameterized matches can
be done in linear space and time.

8.8 JPlag

Authors of JPlag [26] give considerable information of iessdn principles and supply
extensive amount of statistical data of its performancenntava is used [26]. JPlag uses
a structure-based strategy with full parsing for Java artte®e. Comparison of token
sequences is based on Running Karp-Rabin Greedy StrimgyBhd is nearly linear in the
average case [19].
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JPlag supports fully automated decisions. Authors proextensive analysis of a mean-
ingful determination of &utoff criterion which is the borderline similarity value dividing

supposed plagiarisms and supposed non-plagiarisms. Aviatad of 50% is deemed as a
good cutoff value when recall is considered 3 times as inambs precision.

8.9 Comparison

It is clear that considerable technological progress has beade in the field of automatic
detection of co-derivative code since the first non-triggstems appeared in the 1970’s.
Table 1 summarizes the properties of the systems listedeabov

Target Attribute String Full parsing
language(s) counting / comparison
Structural algorithm
metrics
Donaldson et Fortran both exact match no
al
Accuse Pascal attribute N/A no
Plague Pascal, Prolog, | structural LCS, Heckel Pascal
Bourne Shell
scripts
PAHTA Pascal both N/A (AST) yes
CCHECK C both N/A (AST) yes
Dup N/A N/A parameterized | no
LCS
YAP2 C, Lisp structural Heckel no
YAP3 C, Lisp structural RKR-GST no
PDiff N/A N/A parameterized | no
LCS
JPlag Java, Scheme | structural RKR-GST Java, Scheme

Table 1: Comparison of the surveyed systems

9 Future Work

In the process of conducting research for this survey we camess some questions to
which we could not find satisfactory answers from the exgsliterature, and we shall list
some of them here as they might give raise to possible futar&.wOn our list, we may
also include research topics that have explicitly been imeeatl as ongoing or future work
in the existing literature.
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Benchmarking. For comparing the performance and accuracy of differenilaiity mea-
surement methods, it would be important to have an open beathsuite and re-
sults archive, as suggested in [22]. Apparently there a@jregie benchmark suites
available for other purposes, e.g. the TREC database ofaéettions for testing
information retrieval methods [22].

Lexical vs syntactic tokens. Section 6.3.4 discusses the generation of lexical and synta
tic token sequences, but while we have a good idea of how tergenboth kinds
of token sequences, we do not know how significant the chatbeden lexical and
syntactic tokens is in terms of measurement accuracy. Wedwike to see mea-
surement results with two systems that are otherwise iclntexcept that one of
them does full parsing and the other one does not.

Tree vs sequence comparisonAs mentioned in Section 8.4, we consider it an open prob-
lem to determine, which kind of a program syntax represemtatilows one to attain
more accurate co-derivative detection when using a (géneda string matching
algorithm for the comparison: a hierarchical represenator a “flattened” repre-
sentation (such as token sequences). The extra informiatiamierarchical repre-
sentation may tend to increase assurance and decreade vatél would also be
possible to encode some syntax tree information into a tskguence to presum-
ably the same effect.

10 Conclusion

The present systems for the detection of co-derivativecgoande concentrate their anal-
ysis mainly on the structural similarities of programs.u8tural similarity can indeed be

a strong indication of co-derivation, but it is certainly onoting that similar program

structure is not the only co-derivation indicator. Struatucomparison does, however,
appear to be the method which produces the soundest resatiediang to the surveyed

scientific research.

It should be made equally clear that similarity in structorefunction can never by it-
self conclusively prove co-derivation. On the other hahe, lack of sufficient structural
and functional similarity could well be seen as proof thatimpinging plagiarism has

happened. In some instances, simple non-functional sitrels, such as identical com-
menting, may give further indication as to whether we havweledvative source code or
not. That is because such similarities are mostly indep&noliethe structural similari-

ties of programs, and can thus provide extra assurance oof &y structural similarity

measurement results indicating co-derivation.

The state of the art of co-derivative source code detecBems to consistently result from
the need to solve the problem of plagiarism in the contexhofarsity education. Thisis a
problem setup where considerable gains can be had throaglséhof screening methods.
The field of study of plagiarism detection — even in the d&ecof co-derivative source
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code — is not new, and first concrete systems date back to f@#slDespite this, there
still has been interesting progress relatively recently.
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