
Electronic Communications of the EASST
Volume X (2014)

Proceedings of the
Second International Workshop on

Open and Original Problems in
Software Language Engineering (OOPSLE 2014)

Managing Language Variability in Source-to-Source Compilers
by Transforming Illusionary Syntax

Tero Hasu

4 pages

Guest Editors: Anya Helene Bagge, Vadim Zaytsev
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Managing Language Variability in Source-to-Source Compilers
by Transforming Illusionary Syntax

Tero Hasu∗

Bergen Language Design Laboratory
Department of Informatics

University of Bergen, Norway
tero@ii.uib.no

Abstract:
A programming language source-to-source compiler with human-readable output
likely operates on a somewhat source and target language specific program object
model. A lot of implementation investment may be tied to transformation code writ-
ten against the specific model. Yet, both the source and target languages typically
evolve over time, and compilers may additionally support user-specified, domain-
specific language customization. Language workbenches commonly support gen-
erating object model implementations based on grammar or data type definitions,
and programming of traversals in generic ways. Could more be done to declara-
tively specify abstractions for insulating the more language-semantic transforma-
tions against changes to source and target language syntax? For example, the idea
of views enables pattern matching and abstract data types to coexist—could similar
abstractions be made pervasive in a generated program object model?

Keywords: Language adaptation, program representation, Racket, transcompilers

1 Introduction

A programming language implemented as a compiler generating source code allows for reuse
of existing infrastructure for the target language. Such a language can also enable abstraction
over target language versions, implementations, and idioms (such cross-cutting concerns can
be particularly pressing in a cross-platform setting). If the source-code-generating compiler fur-
thermore produces human-readable, high-abstraction-level output, then it also has a low adoption
barrier in the sense that it can be regarded merely as tools assistance for programming in the tar-
get language. We use the term source-to-source compiler (or transcompiler for short) for such
language implementations.1

A transcompiler typically translates its source language into its target language through suc-
cessive program transformation steps. Each transformation step is programmed against a pro-
gram object model (POM), which includes at least a data structure used to represent a program,
∗ This research has been supported by the Research Council of Norway through the project DMPL—Design of a
Mouldable Programming Language.
1 An established definition for the term “source-to-source compiler” encompasses any compiler that produces its
output in a high-level language, even when the output itself is low-level enough to read like assembly. For lack of a
dedicated term for our more narrow definition, we simply use “source-to-source compiler” in the more narrow sense.

1 / 4 Volume X (2014)

mailto:tero@ii.uib.no

Managing Language Variability in Source-to-Source Compilers

and a programming interface (or API) for manipulating the data. The POM (or POMs) used
should be able to represent both source and target language programs, and any in-between lan-
guage. It is common to define an intermediate language (or a core language) with a simpler,
somewhat language agnostic syntax, which is something in between “desugared” source lan-
guage and “ensugared” target language.

A compiler codebase mostly transforming core language may have fewer conditional cases
(due to having fewer language constructs to manipulate) and less dependency on the subject
language (i.e., source language, target language, or both [Kal07]). Still, as a source-to-source
compiler’s output should retain a high level of abstraction, sufficient semantic information must
be carried through the compilation pipeline to allow high-level constructs to be preserved or
recreated. This requirement for a “wider communication path” between the compiler front and
back ends makes it hard to avoid language specificity. Having a large part of a compiler’s code-
base tied to language specifics may make it costly to maintain as languages evolve.

Languages may also change not due to design changes in the course of their evolution, but due
to being designed to be extensible or otherwise adaptable to domain-specific purposes. It may be
desirable to extend a transcompiler’s source language with relevant abstractions for programming
application or platform specific components. Likewise, it may be desirable to customize the out-
put for different program configurations, perhaps to pick a supported or customary error handling
mechanism [Has12], for instance. Where the extension mechanism is merely capable of mapping
extended source language to unextended source language (e.g., traditional Lisp macro systems),
an extension has no impact on the compiler. However, there also are extension mechanisms
powerful enough to enable domain-specific optimizations [RSL+11, TSC+11], for example, and
indeed there might be several extension points within a compilation pipeline [Bag10].

While there are promising approaches (e.g., based on attribute grammars [SKV13] and mod-
ern object-oriented language features [HORM08]) to enable modular language extension, it is as
yet unclear just what kind of language adaptation is possible without having to manually adjust
the compiler codebase. For now, to help achieve some degree of insulation against language vari-
ability in transcompiler engineering, we advocate working on tools support that encourages the
use of abstraction (over specific language constructs) in programming code transformations. Al-
though there are solutions for adapting existing POMs for existing interfaces (e.g., Kalleberg’s
POM adapter technique [Kal07]) and extending existing transformations to meet new require-
ments (e.g., through aspects [Kal07]), there is more work to be done in the area of providing a
richer variety of APIs to program transformations against in the first place.

Structural abstraction is already widely supported in the form of generic traversals of some
kind (e.g., term rewriting strategies, visitor design pattern). Stratego, for example, provides
primitive traversal operators (one, some, and all generic functions) for all abstract syntax tree
node types, as well as combinators for specifying more complex traversals. We are now looking
for better support for language-semantic abstraction. This might entail allowing the programmer
to declaratively express commonalities and relationships between syntactic constructs, and hav-
ing the language development toolkit then readily offer support for writing transformations that
avoid needless syntax specifics (where only a more general characteristic is of interest).

There are a number of existing tools (e.g., GOM [Rei07] and ApiGen) capable of generating a
program model from a language grammar description (or similar), but the generated API invari-
ably just follows the structure of the grammar. Thus, while it may be possible to declare some

Proc. OOPSLE 2014 2 / 4

ECEASST

(struct DeclVar (id t)) ;; variable binding (declaration)
(struct Var (id)) ;; variable reference (value expression)
(struct NameT (id)) ;; type name reference (type expression)

Figure 1: Grammatically unrelated syntax objects types (defined as Racket structures) with a
commonality: each of them contains an identifier. An interface capturing the commonality might
include a predicate, an id symbol accessor and mutator, etc. A global renaming implemented in
terms of such an abstraction should be fairly decoupled from the underlying grammar.

(struct DeclVar (id t))
(struct DefVar (id t v))

(struct DefVar (id t v))
(struct Undefined ())

(struct DeclVar (id t))
(struct DefVar DeclVar (v))

Figure 2: Alternative declarations of syntax object types for the same abstract syntax: (1) unre-
lated types; (2) DeclVar is DefVar with Undefined initializer expression; and (3) with subtyping,
variable definition being a special case of variable declaration.

commonalities between constructs deriving from the same non-terminal, other commonalities
(such as show in Figure 1) typically require ad hoc, handwritten code to capture. We might want
to augment a POM generator to implement interfaces that are independent of both subject lan-
guage grammar and POM data representation. Such interfaces might span multiple (or no) object
types, only provide access to certain portions of available information (possibly in a variety of
formats), and yet appear similar to actual syntax objects’ interfaces. It is unclear as to what kind
of commonalities could conveniently be declared for purposes of code generation, and how.

An abstraction-friendly POM generator might benefit a compiler engineer by: making it less
effort to implement multiple interfaces to choose from on a case-by-case basis (i.e., whichever
seems most convenient for a given transformation); limiting breakage of abstraction-using trans-
formation code upon subject language modification; and providing some insulation against in-
cidental, implementation-specific grammar or program representation choices (such as shown
in Figure 2). The possibility of effortlessly exposing various interfaces should make picking
the “best” concrete choice less crucial in the first place. Even the distinction between object
fields and annotations (i.e., open-ended collections of secondary, “non-structural” information
in syntax objects) should become less prominent.

Pattern matching is commonly used in program transformations. Programming against ab-
stract interfaces need not always mean the loss of pattern matching. The Tom system, for exam-
ple, abstracts over concrete data structures by allowing rewriting based on algebraic terms that
map to actual data structures [Rei07]. For further abstraction one might—following the philoso-
phy of views [Wad87]—(seemingly) expose as many “data representations” per program object
as desired. Some languages have sufficient “hooks” to enable “abstract algebraic views” to be
implemented for purposes of pattern matching (e.g., as demonstrated in Figure 3).

A drawback of the kind of abstraction we have sketched is that it precludes the use of concrete
syntax in patterns and templates, as supported by some language workbenches (e.g., Rascal and
Spoofax). The illusion of semantic commonality capturing interfaces being like those of actual
syntax objects can also be incomplete in respect to other abstraction mechanisms. Suppose a

3 / 4 Volume X (2014)

Managing Language Variability in Source-to-Source Compilers

(define−match−expander DeVar
(syntax−rules ()

[(id t) (or (DeclVar id t) (DefVar id t))]))

(match (DefVar ’x ’T (Literal 5))
[(DeVar id t) (list id t)])

;;=> (x T)

Figure 3: Defining and using a custom pattern matching form DeVar in Racket, for matching
both DeclVar and DefVar objects and their relevant fields. This implementation of DeVar works
for representations (1) and (3) in Figure 2.

particular algebraic view includes a specific annotation (thus making it look structural), but a
generic traversal does not traverse any annotations; now there is a discrepancy, but it is not clear
how the behavior of traversals should be affected by having multiple interfaces per object that
may be used to query for traversable sub-objects.

Bibliography

[Bag10] A. H. Bagge. Yet Another Language Extension Scheme. In Brand et al. (eds.), SLE
’09: Proceedings of the Second International Conference on Software Language
Engineering. LNCS 5969, pp. 123–132. Springer-Verlag, Mar. 2010.

[Has12] T. Hasu. Concrete Error Handling Mechanisms Should Be Configurable. In Pro-
ceedings of the 5th International Workshop on Exception Handling (WEH’12).
Pp. 46–48. IEEE, June 2012.

[HORM08] C. Hofer, K. Ostermann, T. Rendel, A. Moors. Polymorphic Embedding of DSLs.
In Proceedings of the 7th International Conference on Generative Programming
and Component Engineering. GPCE ’08, pp. 137–148. 2008.

[Kal07] K. T. Kalleberg. Abstractions for Language-Independent Program Transformations.
PhD thesis, University of Bergen, Norway, Postboks 7800, 5020 Bergen, Norway,
June 2007. ISBN 978-82-308-0441-4.

[Rei07] A. Reilles. Canonical Abstract Syntax Trees. Electron. Notes Theor. Comput. Sci.
176(4):165–179, July 2007.

[RSL+11] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky, K. Olukotun.
Building-Blocks for Performance Oriented DSLs. ArXiv e-prints, Sept. 2011.

[SKV13] A. M. Sloane, L. C. L. Kats, E. Visser. A Pure Embedding of Attribute Grammars.
Sci. Comput. Program. 78(10):1752–1769, Oct. 2013.

[TSC+11] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, M. Felleisen. Languages
as libraries. SIGPLAN Not. 47(6):132–141, June 2011.

[Wad87] P. Wadler. Views: A Way for Pattern Matching to Cohabit with Data Abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. POPL ’87, pp. 307–313. 1987.

Proc. OOPSLE 2014 4 / 4

	Introduction

