
Concrete Error Handling Mechanisms Should Be Configurable

Tero Hasu
Bergen Language Design Laboratory

Department of Informatics, University of Bergen
Bergen, Norway

tero.hasu@ii.uib.no

Abstract—We argue that programmers should not need to
decide on a specific error handling mechanism when imple-
menting a C or C++ library. Rather, it should be possible to
make that decision at configuration time in order to achieve
better portability and more convenient use of libraries.

Keywords-C, C++, error handling, exceptions, portability, pro-
gramming languages, software engineering, source-to-source
translation

I. MOTIVATION AND POSITION

When creating a software library one would ideally like
to make it generally usable in any application that requires
some of the provided functionality. Given an application and
a library, one has to ask: (1) can the library be built for the
platform on which the application runs; and (2) is the library
convenient to use given the idioms and conventions used in
the application code?

By implementing in C or C++ one automatically achieves
a degree of portability to a multitude of platforms since C
and C++ compilers are so ubiquitous, but the programming
language is only a part of the picture.

It is true that there typically are vendor-supported C and
C++ compilers even for niche platforms (e.g., Bada, Symbian,
z/OS). However, these platforms also come with their own
custom libraries and idioms used in native applications, and
the small size of their respective communities means that
the availability of even the most widely used C and C++

APIs (e.g., ANSI C, POSIX, STL, zlib) cannot be taken
for granted. There may also be restrictions to the language
features available. These factors often mean that a library
(along with its dependencies) cannot easily be built for a
given target platform, or even if it can, it may not fit in well
with the existing application codebase.

In some cases one can switch dependencies to available
ones. For example, consider a mail client using the GnuTLS
library to implement secure sending of emails. For targets on
which GnuTLS is not available, one might be able to switch
to using OpenSSL with reasonable effort, as the GnuTLS use
is likely confined to a small part of the application. There
are, however, two cross-cutting concerns affecting perhaps
a majority of applications, and these are event handling and

error handling.1 Both involve libraries and customs not so
easily replaced as they permeate the codebase.

Here we only consider error handling, as we believe
it worthwhile to focus on a specific, common portability
problem before trying to generalize. (We use the word
error as a general term for any exceptional condition, no
matter how reported and handled. By the word exception we
only mean errors handled using the standard C++ language
exception mechanism.) Indeed we feel that some cross-
cutting concerns are so commonplace as to warrant first-class
language support. Aspect-oriented programming (AOP) may
offer a general way to address such concerns, but generality
tends to come with limitations. Full-blown model-driven
engineering, on the other hand, comes at a relatively large
infrastructure cost [1], and is unlikely to be adopted for
addressing a single concern.

Although the ideas discussed here may apply to other lan-
guages, we focus on C and C++ because they have no single
de facto standard error handling mechanism that everyone
uses. The standard C errno facility sees limited use beyond
the standard library. C++ is often used together with C, and
language interoperability requirements then constrain the use
of C++ exceptions. Some C++ based toolchains do not even
support exceptions (e.g., Arduino, CUDA), and even when
supported, it may be a platform convention not to use them
(e.g. Bada) or not to use them directly (e.g. Symbian). Hard
real time requirements may also preclude their use.

We posit that programmers should not need to fix an error
handling mechanism when implementing a library. Rather,
there should be tools to specialize a suitably abstract error
declaration and handling code at the time when software
is configured or built for a given platform. Having such
tooling would mean that library implementors would not
need to stress over which mechanism to choose, and library
users would still not require any obscure tool to build an
application against the library; rather, the library could be
specialized once for a given platform, and then be distributed
as standard C or C++ code.

1Interestingly, the two concepts are similar in that both involve reporting
and handling (of errors or events). The differences are in flow of control,
as error handling typically involves some form of a (possibly non-local)
return, while event handling involves a move of control, typically via an
event loop, sometimes across threads.



II. REQUIREMENTS AND CHOICE OF ABSTRACTION

In specifying requirements for an implementation of a
retargetable error handling mechanism, we might accept that
when using a non-retargetable “legacy” C or C++ library
internally within a codebase one would have to explicitly
use whatever mechanism is exposed by the library API. But
when creating a new library, one should have the option
of using an abstraction involving enough information to
allow for adapting both the implementation and the API for
different mechanisms.

In the following discussion we sketch code samples in
an imaginary language to illustrate a potentially suitable
abstraction, using custom keywords as appropriate to dis-
tinguish from C++.

In choosing the abstraction we might downplay the im-
portance of declaring error behavior, as such declarations are
little used in C or C++ code. Error conditions for functions are
commonly documented in comments, but actual declarations
are only supported for C++ exceptions, without being required
or statically checked. It seems necessary to know which
functions may cause some error, and this might have to
be declared in some manner (unless static analysis can
determine it). We might not go as far as listing all possible
errors for functions, let alone having checked exceptions.

Db* dbOpen() raising { /∗ i m p l e m e n t a t i o n ∗ / }
raising dbExec; / / f o r a l l o v e r l o a d s
raising dbCreateTable(Db*);

Individual errors might be declared (once) for the purpose
of specifying how to map abstract errors to concrete ones.
The latter might name either values or types, as actions
conditional on exception object type are common in C++.2

#if defined(POSIX_ERRORS)
raisable int ENOMEM NoMemory;

#elif defined(CXX_ERRORS)
raisable typename std::bad_alloc NoMemory;

#elif defined(SYMBIAN_ERRORS)
raisable TInt KErrNoMemory NoMemory;

#else
#error unsupported error mechanism

#endif

The error handling abstraction should be chosen to map
well to the various target mechanisms. A reasonable choice
might be the widely known abstraction of throw and try
/catch like statements. To retain the familiar throw se-
mantics, many-level propagation of errors would need to be
supported, and can be simulated through explicit propagation
for concrete mechanisms not involving non-local returns.

2Where subtyping is involved, we might require concrete error handling
code such that it matches handlers to errors in decreasing type specificity
order, as described by Entwisle et al [1].

throw and try/catch are likely to map well to most non-
local return based error handling mechanisms. Mechanisms
not triggering a break in normal execution are less straight-
forward targets, as with them it is necessary to insert checks
of return values or errno or similar reporting “channels”.
Here is where it becomes useful to know which functions
might fail, unless we prefer to annotate every potentially
failing function call expression.

Db* db = dbOpen();
try { again:

try { dbExec(db, sql); }
rescue (DbNoTable _) {
dbCreateTable(db);
goto again;

}
} rescue (_ e) {

dbClose(db); raise e;
}
dbClose(db);

As one of the most important error recovery tasks in
languages like C and C++ (with manual or semi-manual
memory management) is resource cleanup, we might want a
cleanup abstraction as well, something mapping reasonably
well to both implicit (C++ RAII) and explicit (e.g., Sym-
bian CleanupStack) stack based cleanup mechanisms. The
abstraction might resemble the scope statements of the D
language, probably supporting at least the usual lexical block
scope (as in D).3 There are other scoping options, however,
as e.g. cleanup stacks are separate from the C stack and
independent of lexical scope. The cleanup statements would
have to be restricted to something possible to express using
C++11 lambda functions or similar.

Db* db = dbOpen();
scope(exit) dbClose(db);
again:
try { dbExec(db, sql); }
rescue (DbNoTable _) {

dbCreateTable(db);
goto again;

}

III. IMPLEMENTATION AND USE SCENARIOS

Implementing a mapping to a concrete mechanism should
be possible at least through source-to-source translation, re-
quiring a language that compiles down to C or C++. The Java-
resembling Vala language, for instance, demonstrates how
to target C and GLib’s GError as its (sole) concrete error
handling mechanism. In the GError case error information
is passed via a function argument; one would get similar
code structure using the errno “side channel”.

3For a GCC-specific C implementation one might use GCC’s cleanup
__attribute__ to have a cleanup function run on an automatic

variable when it goes out of scope.



errno = 0;
Db* db = dbOpen();
if (errno) return;
again:
{

errno = 0;
dbExec(db, sql);
if (errno == DbNoTable) {
errno = 0;
dbCreateTable(db);
if (errno) goto __cleanup;
goto again;

}
if (errno) goto __cleanup;

}
int __errsave;
__cleanup:
__errsave = errno;
dbClose(db);
errno = __errsave;

Challenges in error handling code translation include
catering for different mechanisms that can be used for error
propagation and resource cleanup. These include: condi-
tionals, gotos, returns, exceptions, setjmp/longjmp, and
libunwind for propagation (but probably not continuation-
passing style in the case of C and C++); and direct operations
and declared cleanup actions (e.g., RAII, cleanup stack) for
cleanup.

Possible use scenarios for retargetable error mechanisms
are: generating a C++ library implementation (and API) that
does explicit error propagation via extra function arguments
(instead of using throw statements) to work around a
toolchain not supporting C++ exceptions; generating an API
(and implementation) that reports errors via Symbian’s leave
mechanism to make the API convenient to use in a Symbian
native application; etc.

IV. RELATED WORK

Alerts [2] are a powerful solution as the implementor
and user of a library can independently choose the error
handling mechanism against which to program. Existing
“legacy” libraries can also be retrofitted to support alerts
by merely declaring their alert reporting behavior. The solu-
tion also includes additional abstractions for alert handling
convenience.

The approach advocated in this paper has more modest
goals, perhaps making it easier to realize. It also allows
for specializing the same library for multiple concrete error
reporting mechanisms, giving library users choice. Alert
reporting libraries are implemented using a specific concrete
error reporting mechanism, and alert-enabled tooling is
required throughout the development of an application using
a different mechanism as call sites have to be adapted.

The Lua language includes its own error handling abstrac-
tions, and its implementation [3] supports C preprocessor

based compile-time configuration of the stack unwinding
mechanism to use for error propagation. Basic resource
cleanup (both after normal and exceptional processing)
happens as Lua known but unreachable objects are subject
to garbage collection. When programming against Lua’s C
API one could regard Lua’s state object (and the associated
virtual stack) as something akin to a cleanup stack.

As Lua is highly portable and has a rich C API, one could
claim that it in a sense already provides a way to do portable
error handling in C or C++. Our suggested approach has
the advantage of not requiring any form of non-local return
operation for the error handling implementation. Another
notable difference is that our error handling mechanism
configuration affects the API as well as the implementation.

AOP has been used for separating error handling concerns
into aspects [4], and could hence, in theory, be used to
achieve late binding of mechanism-specific error handling
code. However, while “aspectization” may work for general
error handling such as reporting and terminating execution,
realistic software systems have more context-dependent error
recovery requirements, with resource cleanup being a prime
example. This makes it uncertain whether applying AOP to
application-specific error handling is beneficial [5].

ACKNOWLEDGMENTS

Thanks to Eva Burrows, Anya Helene Bagge, Magne
Haveraaen, and the anonymous referees for advice and
improvement suggestions. This work has been funded by
the Research Council of Norway.

REFERENCES

[1] S. Entwisle, H. Schmidt, I. Peake, and E. Kendall, “A model
driven exception management framework for developing reli-
able software systems,” in Proceedings of 10th IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC), Hong Kong, Oct. 2006, pp. 307–318.

[2] A. H. Bagge, V. David, M. Haveraaen, and K. T. Kalleberg,
“Stayin’ alert: Moulding failure and exceptions to your needs,”
in Proceedings of the 5th International Conference on Gen-
erative Programming and Component Engineering (GPCE),
Portland, Oregon, Oct. 2006.

[3] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The
implementation of Lua 5.0,” Journal of Universal Computer
Science, vol. 11, no. 7, pp. 1159–1176, Jul. 2005.

[4] M. Lippert and C. V. Lopes, “A study on exception detection
and handling using aspect-oriented programming,” in Pro-
ceedings of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, Jun. 2000, pp. 418–
427.

[5] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia,
and C. M. F. Rubira, “Exceptions and aspects: The devil
is in the details,” in Proceedings of the 14th International
Symposium on the Foundations of Software Engineering (FSE),
Portland, Oregon, Nov. 2006, pp. 152–162.


