
Source-to-Source Compilation via Submodules

Tero Hasu
BLDL and University of Bergen

tero@ii.uib.no

Matthew Flatt
PLT and University of Utah

mflatt@cs.utah.edu

ABSTRACT
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of a
new language differs significantly from Racket’s core, macros of-
fer a maintainable approach to implementing a larger language by
desugaring into the core. Users of the language gain the benefits
of Racket’s programming environment, its build management, and
even its macro support (if macros are exposed to programmers of
the new language), while Racket’s syntax objects and submodules
provide convenient mechanisms for recording and extracting pro-
gram information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

CCS Concepts
•Software and its engineering Ñ Extensible languages; Trans-
lator writing systems and compiler generators;

Keywords
Language embedding, module systems, separate compilation

1. INTRODUCTION
A macro expander supports the extension of a programming lan-

guage by translating extensions into a predefined core language. A
source-to-source compiler (or transcompiler for short) is similar, in
that it takes source code in one language and produces source code
for another language. Since both macro expansion and source-to-
source compilation entail translation between languages, and since
individual translation steps can often be conveniently specified as
macro transformations, a macro-enabled language can provide a
convenient platform for implementing a transcompiler.

Racket’s macro system, in particular, not only supports language
extension—where the existing base language is enriched with new
syntactic forms—but also language definition—where a completely

new language is implemented though macros while hiding or adapt-
ing the syntactic forms of the base language. Racket’s macro sys-
tem is thus suitable for implementing a language with a different or
constrained execution model relative to the core Racket language.

Magnolisp is a Racket-based language that targets embedded de-
vices. Relative to Racket, Magnolisp is constrained in ways that
make it more suitable for platforms with limited memory and pro-
cessors. For deployment, the Magnolisp compiler transcompiles a
core language to C++. For development, since cross-compilation
and testing on embedded devices can be particularly time consum-
ing, Magnolisp programs also run directly on the Racket virtual
machine (VM) using libraries that simulate the target environment.

Racket-based languages normally target only the Racket VM,
where macros expand to a core Racket language, core Racket is
compiled into bytecode form, and then the bytecode form is run:

Racket-based
language

macroexpand
core Racket

Racket VM
run

bytecode

compile

To instead transcompile a Racket-based language, Magnolisp could
access the representation of a program after it has been macro-
expanded to its core (via the read and expand functions). Fully
expanding the program, however, would produce Racket’s core lan-
guage, instead of Magnolisp’s core language. External expansion
would also miss out on some strengths of the Racket environment,
including automatic management of build dependencies.

Magnolisp demonstrates an alternative approach that takes full
advantage of Racket mechanisms to assemble a “transcompile time”
view of the program. The macros that implement Magnolisp ar-
range for a representation of the core program to be preserved in
the Racket bytecode form of modules. That representation can be
extracted as input to the mglc compiler to C++:

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

In this picture, the smaller boxes correspond to a core-form recon-
struction that is only run in transcompile-time mode (as depicted by
the longer arrow of the “run” step). The boxes are implemented as

submodules (Flatt 2013), and the core form is extracted by running
the submodules instead of the main program modules.

By compiling a source program to one that constructs an AST for
use by another compiler layer, our approach is similar to lightweight
modular staging in Scala (Rompf and Odersky 2010) or strategies
that exploit type classes in Haskell (Chakravarty et al. 2011). Mag-
nolisp demonstrates how macros can achieve the same effect, but
with the advantages of macros and submodules over type-directed
overloading: more flexibility in defining the language syntax, sup-
port for static checking that is more precisely tailored to the lan-
guage, and direct support for managing different instantiations of a
program (i.e., direct evaluation versus transcompilation).

2. MAGNOLISP
Magnolisp1 is statically typed, and all data types and function

invocations are resolvable to specific implementations at compile
time. Static typing for Magnolisp programs facilitates compilation
to efficient C++, as the static types can be mapped directly to their
C++ counterparts. To reduce syntactic clutter from annotations and
to help retain untyped Racket’s “look and feel,” Magnolisp sup-
ports type inference à la Hindley-Milner.

Magnolisp’s surface syntax is similar to Racket’s for common
constructs, but it also has language-specific constructs, including
ones that do not directly map into Racket core language (e.g., if-
cxx for conditional transcompilation). Magnolisp uses Racket’s
module system for managing bindings, both for run-time functions
and for macros. An exported C++ interface is defined separately
through export annotations on function definitions; only ex-
ported functions are declared in the generated C++ header file.

A Magnolisp module starts with #lang magnolisp. The
module’s top-level can define functions, types, and so on. A
function marked as foreign is assumed to be implemented in
C++; it may also have a Racket implementation, given as the body
expression, to allow it to be run in the Racket VM. Types are de-
fined only in C++, so they are always foreign, and typedef
can be used to give the corresponding Magnolisp declarations. The
type annotation is used to specify types for functions and vari-
ables, and type expressions can refer to declared type names. The
#:: keyword is used to specify a set of annotations for a definition.

In the following example, add is a Magnolisp function of type
(-> Int Int Int), i.e., a binary function that computes with
values of type Int. The (rkt.+ x y) expression in the func-
tion body is a call to a Racket function from the racket/base
module to approximately simulate C++ integer addition:

#lang magnolisp
(require magnolisp/std/list

(prefix-in rkt. racket/base))

(typedef Int #:: ([foreign int]))
(define (add x y) ; integer primitive (implemented in C++)

#:: (foreign [type (-> Int Int Int)])
(rkt.+ x y))

No C++ code is generated for the above definitions, as they are
both declared as foreign. As in Racket, it is possible to define
macros; this pattern-based one defines a new conditional, which
uses magnolisp/std/list module’s empty? function:

(define-syntax-rule (if-empty lst thn els)
(if (empty? lst) thn els))

For an example with a C++ translation, consider sum-2, a function
that uses the above definitions to compute the sum of the first two
elements of its list argument (or fewer for shorter lists):
1Available from http://bldl.github.io/magnolisp-els16/

(define (sum-2 lst) #:: (export)
(if-empty lst 0

(let ([t (tail lst)])
(if-empty t (head lst)

(add (head lst) (head t))))))

The transcompiler-generated C++ implementation for the sum-2
function is the following (apart from minor reformatting):

MGL_API_FUNC int sum_2(List<int> const& lst) {
List<int> t;
return is_empty(lst) ?

0 :
((t = tail(lst)),

(is_empty(t) ? head(lst) :
add(head(lst), head(t))));

}

Figure 1 shows an overview of the Magnolisp architecture, in-
cluding both the magnolisp-defined front end and the mglc-
driven middle and back ends. Figure 2 illustrates the forms of
data that flow through the compilation pipeline. Transcompilation
triggers running of "a.rkt" module’s transcompile-time code,
through magnolisp-s2s submodule’s instantiation by invoking
dynamic-require to fetch values for certain variables (e.g.,
def-lst); the values describe the code of "a.rkt", and are
already in the compiler’s internal data format. Any referenced de-
pendencies of "a.rkt" (e.g., "num-types.rkt", as indicated
by int’s binding information) are processed in the same manner,
and the relevant definitions are incorporated into the compilation
result (i.e., "a.cpp" and "a.hpp").

The middle and back ends are accessed either via the mglc
command-line tool or via the underlying API as a Racket mod-
ule. In either case, the expected input is a set of modules for
transcompilation into C++. The compiler loads any transcompile-
time code in the modules and their dependencies. Any module with
a magnolisp-s2s submodule is assumed to be Magnolisp, but
other Racket-based languages may also be used for macro program-
ming or simulation. The Magnolisp compiler effectively ignores
any code that is not run-time code in a Magnolisp module.

The program transformations performed by the compiler are gen-
erally expressed with term-rewriting strategies. These strategies are
implemented by a custom combinator library2 that is inspired by
Stratego (Bravenboer et al. 2008). Syntax trees that are prepared
for the transcompilation phase instantiate data types that support
the primitive strategy combinators of the combinator library.

The compiler middle end implements whole-program optimiza-
tion (by dropping unused definitions), type inference, and some
simplifications (e.g., removal of condition checks where the condi-
tion is constant). The back end implements translation from Mag-
nolisp core to C++ syntax (involving, e.g., lambda lifting), copy
propagation, C++-compatible identifier renaming, splitting of code
into sections (e.g.: public declarations, private declarations, and
private implementations), and pretty printing.

3. TRANSLATED-LANGUAGE HOSTING
Magnolisp is an example of a general strategy for building a

transcompiled language within Racket. In this section, we describe
some details of that process for an arbitrary transcompiled language
L. Where the distinction matters, we use LR to denote a language
that is intended to also run in the Racket VM (possibly with mock
implementations of some primitives), and LC to denote a language
that only runs through compilation into a different language.

2http://bldl.github.io/illusyn/

http://bldl.github.io/magnolisp-els16/
http://bldl.github.io/illusyn/

front end
middle end back end

a.rkt
(Magnolisp

source)

Racket
macro

expander

inputOf

Magnolisp
libraries

refersTo

a.rkt
(core

Racket)

expandsTo

a.rkt
magnolisp-s2s

submodule

contains

module
loader

evaluates

analyses &
optimizations

middle-end
API

invokes invokes

IR

outputs

back-end
API

C++
back-end

driver

invokes

translator

invokes

sectioner

invokes

pretty
printer

invokes

a.cpp

generates

a.hpp

generates

inputOf

mglc
(CLI tool)

invokes invokes

Figure 1: The overall architecture of the Magnolisp implementation, showing some of the components involved in compiling a Magnolisp
source file "a.rkt" into a C++ implementation file "a.cpp" and a C++ header file "a.hpp". The dotted arrows indicate that the use
of the mglc command-line tool is optional; the middle and back end APIs may also be invoked by other programs. The dashed “evaluates”
arrow indicates a conditional connection between the left and right hand sides of the diagram; the magnolisp-s2s submodule is only
loaded when transcompiling. The “expandsTo” connection is likewise conditional, as "a.rkt" may have been compiled to bytecode ahead
of time, in which case the module is already available in a macro-expanded form; otherwise it is compiled on demand by Racket.

a.rkt

#lang magnolisp
(require "num-types.rkt")
(define (int-id x)
 #:: ([type (-> int int)] export)
 x)

(module a magnolisp/main
 (#%module-begin

(module magnolisp-s2s racket/base
 (#%module-begin

(define-values (def-lst)
 (#%app list (#%app DefVar)))
....))

....
(#%require "num-types.rkt")
(define-values (int-id))))

a.rkt (core) macroexpand

IR

def-lst

list

DefVar

annos

....

Id

.... int-id

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
 return x;
}

#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);

a.hpp

translate

run

Figure 2: Subset of Figure 1 showing file content: a Magnolisp
module passing through the compilation pipeline.

Building a language in Racket means defining a module or set
of modules to implement the language. The language’s modules
define and export macros to compile the language’s syntactic forms
to core forms. In our strategy, furthermore, the expansion of the
language’s syntactic forms produces nested submodules to separate
code than can be run directly in the Racket VM from information
that is used to continue compilation to a different target.

3.1 Modules and #lang
All Racket code resides within some module, and each module

starts with a declaration of its language. A module’s language dec-
laration has the form #lang L as the first line of the module. The
remainder of the module can access only the syntactic forms and
other bindings made available by the language L.

A language is itself implemented as a module.3 In general, a
language’s module provides a reader that gets complete control
over the module’s text after the #lang line. A reader produces
a syntax object, which is a kind of S-expression (that combines
lists, symbols, etc.) that is enriched with source locations and
other lexical context. We restrict our attention here to using the de-
fault reader, which parses module content directly as S-expressions,
adding source locations and an initially empty lexical context.

For example, to start the implementation of L such that it uses
the default reader, we might create a "main.rkt" module in an
"L" directory, and add a reader submodule that points back to
L/main as implementing the rest of L:

#lang racket
(module reader syntax/module-reader L/main)

The S-expression produced by a language’s reader serves as in-
put to the macro-expansion phase. A language’s module provides
syntactic forms and other bindings for use in the expansion phase

3Some language must be predefined, of course. For practical pur-
poses, assume that the racket module is predefined.

by exporting macros and variables. A language L can re-export all
of the bindings of some other language, in which case L acts as an
extension of that language, or it can export an arbitrarily restrictive
set of bindings.

A language must at least export a macro named #%module-
begin, because that form implicitly wraps the body of a module.
Most languages simply use #%module-begin from racket,
which treats the module body as a sequence of require import-
ing forms, provide exporting forms, definitions, expressions, and
nested submodules, where a macro use in the module body can ex-
pand to any of the expected forms. A language might restrict the
body of modules by either providing an alternative #%module-
begin or by withholding other forms. A language might also pro-
vide a #%module-begin that explicitly expands all forms within
the module body, and then applies constraints or collects informa-
tion in terms of the core forms of the language.

As an example, the following "main.rkt" re-exports all of
racket except require (and the related core language name
#%require), which means that modules in the language L cannot
import other modules. It also supplies an alternate #%module-
begin macro to pre-process the module body in some way:

#lang racket
(module reader syntax/module-reader L/main)
(provide

(except-out (all-from-out racket)
require #%require #%module-begin)

(rename-out [L-module-begin #%module-begin]))
(define-syntax L-module-begin)

For transcompilation, the #%module-begin macro plays a
key role in our strategy. A Racket language L that is intended for
transcompilation is defined as follows:

‚ L’s module exports bindings that define the language’s sur-
face syntax, and expand only to transcompiler-supported run-
time forms. We describe this step further in section 3.2

‚ Macros record any additional metadata required for trans-
compilation. We describe this step further in section 3.3

‚ The #%module-begin macro expands all the macros in
the module body. We describe this step further in section 3.4

‚ After full macro expansion, #%module-begin adds exter-
nally loadable information about the expanded module into
the module. We describe this step further in section 3.5

‚ Any run-time support for running programs is provided along-
side the macros that define the syntax of the language. We
describe this step further in section 3.6

The export bindings of L may include variables, and the presence
of transcompilation introduces some nuances into their meaning.
When the meaning of a variable in L is defined in L, we say that
it is a non-primitive. When its meaning is defined in the execution
language, we say that it is a primitive. When the meaning of its
appearances is defined by a compiler (or a macro) of L, we say that
it is a built-in. As different execution targets may have different
compilers, a built-in for one target may be a primitive for another.

3.2 Defining Surface Syntax
A module that implements the surface syntax of a language L

exports a binding for each predefined entity of L, whether that en-
tity is a built-in variable, a core-language construct, or a derived
form. When the core language is a subset of Racket, derived forms
obviously should expand to the subset. Where the core of L is a

superset of Racket, additional constructs need an encoding in terms
of Racket’s core forms where the encoding is recognizable after
expansion; possible encoding strategies include:

‚ E1. Use a variable binding to identify a core-language form.
Use it in an application position to allow other forms to ap-
pear within the application form. Subexpressions within the
form can be delayed with lambda wrappers, if necessary.

‚ E2. Attach information to a syntax object through its syntax
property table; macros that manipulate syntax objects must
then propagate properties correctly.

‚ E3. Store information about a form in a compile-time table
that is external to the module’s syntax objects.

A caveat for strategies E2 and E3 is that syntax properties and
compile-time tables are transient, generally becoming unavailable
after a module is fully expanded; any information to be preserved
must be reflected as generated code in the module’s expansion, as
discussed in section 3.5. Another caveat of such “out-of-band” stor-
age is that identifiers in the stored data must not be moved out of
band too early; a binding form must be expanded before its refer-
ences are moved so that each identifier properly refers to its bind-
ing.

In the case of LR, the result of a macro-expansion should be com-
patible with both the transcompiler and the Racket evaluator. The
necessary duality can be achieved if the surface syntax defining
macros can adhere to these constraints: (C1) exclude Racket core
form uses that are not supported by the compiler; (C2) add any
compilation hints to Racket core forms in a way that does not af-
fect evaluation (e.g., as custom syntax properties); and (C3) encode
any compilation-specific syntax in terms of core forms that appear
only in places where they do not affect Racket execution semantics.

Where constraints C1–C3 cannot be satisfied, a fallback is to
have #%module-begin rewrite the run- or transcompile-time
code (or both) to make it conform to the expected core language.
Rewriting may still be constrained by the presence of binding forms.

For cases where a language’s forms do not map neatly to Racket
binding constructs, Racket’s macro API supports explicit definition
contexts (Flatt et al. 2012), which enable the implementation of
custom binding forms that cooperate with macro expansion.

For an example of foreign core form encoding strategy E1, con-
sider an LC with a parallel construct that evaluates two forms in
parallel. This construct might be defined simply as a “dummy” con-
stant, recognized by the transcompiler as a specific built-in by its
identifier, translating any appearances of (parallel e1 e2)
“function applications” appropriately:

(define parallel #f)

Alternatively, as an example of strategy E2, LC’s (parallel
e1 e2) form might simply expand to (list e1 e2), but with
a 'parallel syntax property on the list call to indicate that
the argument expressions are intended to run in parallel:

(define-syntax (parallel stx)
(syntax-case stx ()

[(parallel e1 e2)
(syntax-property #'(list e1 e2)

'parallel #t)]))

For LR, parallel might instead be implemented as a simple
pattern-based macro that wraps the two expressions in lambda
and passes them to a call-in-parallel run-time function,
again in accordance to strategy E1. The call-in-parallel
variable could then be treated as a built-in by the transcompiler and
implemented as a primitive for running in the Racket VM:

(define-syntax-rule (parallel e1 e2)
(call-in-parallel (lambda () e1) (lambda () e2)))

For an example of adhering to constraint C3, we give a simpli-
fied definition of Magnolisp’s typedef form. A declared type t
is bound as a variable to allow Racket to resolve type references;
these bindings also exist for evaluation as Racket, but they are never
referenced at run time. The #%magnolisp built-in is used to en-
code the meaning of the variable, but as it has no useful definition
in Racket, evaluation of any expressions involving it is prevented.
The CORE macro is a convenience for wrapping (#%magnolisp
....) expressions in an (if #f #f) form to “short-
circuit” the overall expression and make it obvious to the Racket
bytecode optimizer that the enclosed expression is never evalu-
ated. The annotate form is a macro that stores the annotations
a ..., which might, for example, include t’s C++ name.

(define #%magnolisp #f)
(define-syntax-rule (CORE kind arg ...)

(if #f (#%magnolisp kind arg ...) #f))

(define-syntax-rule (typedef t #:: (a ...))
(define t

(annotate (a ...) (CORE 'foreign-type))))

3.3 Storing Metadata
A language implementation may involve metadata that describes

a syntax object, but is not itself a core syntactic construct in the
language. Such data may encode information (e.g., optimization
hints) that is meaningful to a compiler or other kinds of external
tools. Metadata might be collected automatically by the language
infrastructure (e.g., source locations in Racket), it might be inferred
by macros at expansion time, or it might be specified as explicit
annotations in source code (e.g., Magnolisp functions’ export).

Metadata differs from language constructs in that it does not tend
to appear (or at least not remain) as a node of its own in a syntax
tree. A workable strategy for retaining any necessary metadata is
to have L’s syntactic forms store it during macro expansion. En-
coding strategies E1–E3 apply also for metadata, for which storage
in syntax properties is a typical choice. Typed Racket, for exam-
ple, stores its type annotations in a custom 'type-annotation
syntax property (Tobin-Hochstadt et al. 2011).

Compile-time tables are another likely option for metadata stor-
age. For storing data for a named definition, one might use an iden-
tifier table, which is a dictionary data structure where each entry is
keyed by an identifier. An identifier, in turn, is a syntax object for
a symbol. Such a table is suitable for both local and top-level bind-
ings, because the syntax object’s lexical context can distinguish
different bindings that have the same symbolic name.

Recording metadata in compile-time state has the specific advan-
tage of the data getting collated already during macro expansion
which enables lookups across macro invocation sites, without any
separate program analysis phase. One could, for example, keep
track of variables annotated as #:mutable, perhaps to enforce le-
gality of assignments already at macro-expansion time, or to de-
clare immutable variables as const in C++ output:

(define-for-syntax mutables (make-free-id-table))

(define-syntax (my-define stx)
(syntax-case stx ()

[(_ x v)
#'(define x v)]

[(_ #:mut x v)
(free-id-table-set! mutables #'x #t)
#'(define x v)]))

It is also possible to encode annotations in the syntax tree proper,

which has the advantage of fully subjecting annotations to macro
expansion. Magnolisp adopts this approach for its annotation record-
ing, using a special 'annotate-property-flagged let-values
form to contain annotations. Each contained annotation expression
a (e.g., [type]) has its Racket evaluation prevented by
encoding it as a Magnolisp CORE form:

(define-syntax-rule (type t) (CORE 'anno 'type t))

(define-syntax (annotate stx)
(syntax-case stx ()

[(_ (a ...) e)
(syntax-property

(syntax/loc stx ; retain stx’s source location
(let-values ([() (begin a (values))] ...)

e))
'annotate #t)]))

The annotate-generated let-values forms introduce no bind-
ings, and their right-hand-side expressions yield no values; only the
expressions themselves matter. Where the annotated expression e
is an initializer expression, the Magnolisp compiler decides which
of the annotations to actually associate with the initialized variable.

3.4 Expanding Macros
One benefit of reusing the Racket macro system with L is to

avoid having to implement an L-specific macro system. When the
Racket macro expander takes care of macro expansion, the remain-
ing transcompilation pipeline only needs to understand L’s core
syntax (and any related metadata). Racket includes two features
that make it possible to expand all the macros in a module body,
and afterwards process the resulting syntax, all within the language.

The first of these features is the #%module-begin macro,
which can transform the entire body of a module. The second is
the local-expand (Flatt et al. 2012) function, which may be
used to fully expand all the #%module-begin sub-forms.

The local-expand operation also supports partial sub-form
expansion, as it takes a “stop list” of identifiers that prevent de-
scending into sub-expressions with a listed name. At first glance,
one might imagine exploiting this feature to allow foreign core syn-
tax to appear in a syntax tree, and simply prevent Racket from pro-
ceeding into such forms. That strategy would mean, however, that
foreign binding forms would not be accounted for in Racket’s bind-
ing resolution. It would also be a problem if foreign syntactic forms
could include Racket syntax sub-forms, as such sub-forms would
need to be expanded along with enclosing binding forms.

3.5 Exporting Information to External Tools
After the #%module-begin macro has fully expanded the con-

tent of a module, it can gather information about the expanded con-
tent to make it available for transcompilation. The gathered infor-
mation can be turned into an expression that reconstructs the in-
formation, and that expression can be added to the overall module
body that is produced by #%module-begin.

The information-reconstructing expression should not be added
to the module as a run-time expression, because extracting the in-
formation for transcompilation would then require running the pro-
gram (in the Racket VM). Instead, the information is better added
as compile-time code. The compile-time code is then available
from the module while compiling other L modules, which might
require extra compile-time information about a module that is im-
ported into another L module. More generally, the information can
be extracted by running only the compile-time portions of the mod-
ule, instead of running the module normally.

As a further generalization of the compile versus run time split,
the information can be placed into a separate submodule within the

module. A submodule can have a dynamic extent (i.e., run time)
that is unrelated to the dynamic extent of its enclosing module, and
its bytecode may even be loaded separately from that of the enclos-
ing module. As long as a compile-time connection is acceptable, a
submodule can include syntax-quoted data that refers to bindings in
the enclosing module, so that information can be easily correlated
with bindings that are exported from the module.

For example, suppose that L implements definitions by produc-
ing a normal Racket definition for running within the Racket virtual
machine, but it also needs a syntax-quoted version of the expanded
definition to compile to a different target. The module+ form can
be used to incrementally build up a to-compile submodule that
houses definitions of the syntax-quoted expressions:

(define-syntax (L-define stx)
(syntax-case stx ()

[(L-define id rhs)
(with-syntax ([rhs2 (local-expand #'rhs

'expression null)])
#'(begin

(define id rhs2)
(begin-for-syntax

(module+ to-compile
(define id #'rhs2)))))]))

The begin-for-syntax wrapping makes the to-compile
submodule reside at compilation time relative to the enclosing mod-
ule, so that loading the submodule will not run the enclosing mod-
ule. Within to-compile, the expanded right-hand side is quoted
as syntax using #’. Syntax-quoted code is often a good choice
of representation for code to be compiled again to a different tar-
get language, because lexical-binding information is preserved in a
syntax quote. Source locations are also preserved, so that a com-
piler can report errors or warnings in terms of a form’s original
location (mglc fetches original source text based on location).

Another natural representation choice is to use any custom inter-
mediate representation (IR) of the compiler. Magnolisp, for exam-
ple, processes Racket syntax trees already during macro expansion,
turning them into its IR format, which also incorporates metadata.
The IR uses Racket struct instances to represent AST nodes,
while still retaining some of the original Racket syntax objects as
metadata, for purposes of transcompile-time reporting of semantic
errors. Magnolisp programs are parsed at least twice, first from text
to Racket syntax objects by the reader, and then from syntax objects
to the IR by #%module-begin; additionally, any macros effec-
tively parse syntax objects to syntax objects. As parsing is com-
pleted already in #%module-begin, any Magnolisp syntax er-
rors are discovered even when just evaluating programs as Racket.

The #%module-begin macro of magnolisp exports the IR
via a submodule named magnolisp-s2s. The submodule con-
tains an expression that reconstructs the IR, albeit in a somewhat
lossy way, excluding details that are irrelevant for compilation.
The IR is accompanied by a table of identifier binding informa-
tion indexed by module-locally unique symbols, which the trans-
compiler uses for cross-module resolution of top-level bindings,
to reconstruct the identifier binding relationships that would have
been preserved by Racket if exported as syntax-quoted code. As
magnolisp-s2s submodules do not refer to the bindings of the
enclosing module, they are loadable independently from it.

3.6 Run-Time Support
The modules that implement a Racket language can also define

run-time support for executing programs. For L, such support may
be required for the compilation target environment; for LR, any sup-
port would also be required for the Racket VM. Run-time support
for L is required when L exports bindings to run-time variables, or

when the macro expansion of L can produce code referring to run-
time variables (even if such a variable’s run-time existence is very
limited, as it is for #%magnolisp).

Every run-time variable requires a run-time binding, to make it
possible for Racket to resolve references to them. When binding
built-ins and primitives of LC, any initial value expression can be
given, as the expressions are not evaluated. A literal constant ex-
pression is a suitable initializer for built-ins of LR, which are ini-
tialized for Racket VM execution, but generally never referenced.

Each non-primitive is—by definition—implemented in L, with a
single definition applicable for all targets. Strictly speaking, though,
any non-primitive that is exported by a Racket module L cannot it-
self be implemented in L, but must use a smaller language; the
Racket module system does not allow cyclic dependencies.

Defining a primitive of L involves specifying a translation for
appearances of the variable into any target language. For a Racket
VM target, the variable’s value must specify its meaning. For other
targets, it may be most convenient to specify the target language
mapping in L, assuming that L includes specific language for that
purpose. As the mappings are only needed during transcompila-
tion, any metadata specifying them might be placed into a module
that is only loaded on demand by the compiler.

The magnolisp language, for example, binds three run-time
variables, all of which are built-ins. Of these, #%magnolisp is
only used for its binding, and only during macro expansion. The
compiler knows that conditional expressions must always be of
type Bool, and that Void is the unit type of the language; this
knowledge is useful during type checking and optimization. Ref-
erences to the Magnolisp built-ins may appear in code generated
by magnolisp’s macros, and hence they must already be bound
for the language implementation. Their metadata (specifying C++
translations) is not required by the macros, however, which makes
it possible to declare that information separately, using Magno-
lisp’s own syntax for storing metadata for an existing binding:

#lang magnolisp/base
(require "core.rkt" "surface.rkt")
(declare #:type Bool #:: ([foreign bool]))
(declare #:type Void #:: ([foreign void]))

4. EVALUATION
Our Racket-hosted transcompilation approach is generic—in the-

ory capable of accommodating a large class of languages. In prac-
tice, we imagine that it is most useful for hosting newly developed
languages (such as Magnolisp), where design choices can achieve
a high degree of reuse of the Racket infrastructure. In particular,
Racket’s support for creating new, extensible languages could be
a substantial motivation to follow our approach. Racket hosting
is particularly appropriate for an evolving language, since macros
facilitate quick experimentation with language features.

Another potential use of our strategy is to add transcompilation
support for an existing Racket-based language. We have done so for
Erda4, creating ErdaC++ as its C++-translatable variant. Erda has
Racket-like syntax, but its evaluation differs significantly from both
Racket and Magnolisp. ErdaC++ programs nonetheless compile to
C++ using an unmodified Magnolisp compiler.

ErdaC++ illustrates that Magnolisp is not only a language, but
also infrastructure for making Racket-based languages translatable
into C++. A Magnolisp-based language must be transformable
into Magnolisp’s core language, which is more limited than that
of Racket (lacking first-class functions, escaping closures, etc.),
but the language can have its own runtime libraries (whose names

4http://bldl.github.io/erda/

http://bldl.github.io/erda/

must be magnolisp-s2s-communicated to mglc). The Racket
API of Magnolisp includes a make-module-begin function
that makes it convenient for other languages to implement mglc-
compatible #%module-begin macros—ones that communicate
all the expected information.

A potential drawback of transcompilation is the disconnect be-
tween the original, unexpanded code and its corresponding gener-
ated source code, which can lead to difficulties in debugging. The
problem is made worse by macros, and it can be particularly press-
ing when the output is hard for humans to read. As Racket’s macro
expansion preserves source locations, a transcompiler could at least
emit the original locations via #line directives (as in C++) or
source maps (as supported by some JavaScript environments).

4.1 Language Design Constraints
In our experience, two design constraints make Racket reuse es-

pecially effective: the hosted language’s name resolution should be
compatible with Racket’s, and its syntax should use S-expressions.

Overloading as a language feature, for instance, appears a bad
fit for Racket’s name resolution. Instead of overloading, names in
Racket programs are typically prefixed with a datatype name, as
in string-length and vector-length. Constructs for re-
naming at module boundaries, such as prefix-in and prefix-
out, help implement and manage name-prefixing conventions.

An S-expression syntax is not strictly necessary, but Racket’s
macro programming APIs work especially well with its default
parsing machinery. The language implementor can then essentially
use concrete syntax in patterns and templates for matching and gen-
erating code. This machinery is comparable to concrete-syntax
support in program transformation toolkits such as Rascal (Klint
et al. 2009) and Spoofax (Kats and Visser 2010). Still, other kinds
of concrete syntaxes can be adopted for Racket languages, with or
without support for expressing macro patterns in terms of concrete
syntax, as demonstrated by implementations of Honu (Rafkind and
Flatt 2012) and Python (Ramos and Leitão 2014).

5. RELATED WORK
Many language implementations run on Lisp dialects and also

target other environments. Some languages, such as Linj (2013)
or Clojure plus ClojureScript (2016), primarily provide a Lisp-
like language in the target environment. Other languages, such as
STELLA (Chalupsky and MacGregor 1999) and Parenscript (2016),
primarily match the target environment’s semantics but enable ex-
ecution in a Lisp as well. Magnolisp is closer to the latter group, in
that it primarily targets the target environment’s semantics.

Most other languages previously implemented on Racket have
been meant for execution only on the Racket virtual machine, but
a notable exception is Dracula (Eastlund 2012), which compiles
macro-expanded programs to ACL2. Its (so far largely undoc-
umented) compilation strategy is to expand syntactic forms to a
subset of Racket’s core forms, and to specially recognize applica-
tions of certain functions (such as make-generic) for compila-
tion to ACL2. The part of a Dracula program that runs in Racket
is expanded normally, while the part to be translated to ACL2 is
recorded in a submodule through a combination of structures and
syntax objects, where binding information in syntax objects helps
guide the translation.

Whalesong (Yoo and Krishnamurthi 2013) and Pycket (Bauman
et al. 2015) are both implementations of Racket targeting foreign
language environments. Their approaches to acquiring fully macro-
expanded Racket core language differ from ours. Whalesong com-
piles to JavaScript via Racket bytecode, which is optimized for ef-
ficient execution (e.g., through inlining), but does not retain all of

the original (core) syntax; thus, it is not the most semantics-rich
starting point for translation into foreign languages. The Pycket
compiler instead performs external expansion to get core Racket; it
reads, expands, and JSON-serializes Racket syntax, in order to
pass it over to the RPython meta-tracing framework.

Ziggurat (Fisher and Shivers 2008)—also built on Racket (then
PLT Scheme)—is a meta-language system for implementing ex-
tensible languages. Its approach allows both for self-extension and
transcompilation of languages, with different tradeoffs compared to
ours. Ziggurat features hygienic macros that are Scheme-like, but
have access to static semantics, as defined for a language through
other provided mechanisms; Racket lacks specific support for inter-
leaving macro expansion with custom analysis. Ziggurat’s macros
may be locally scoped, but not organized into separately loadable
modules; Racket allows for both. There is basic safety of macro
composition with respect to Ziggurat’s own name resolution, but
composability of custom static semantics depends on their imple-
mentation. Ziggurat includes constructs for defining new syntax
object types, while our approach requires encoding “tricks.”

Lightweight Modular Staging (LMS) (Rompf and Odersky 2010)
is similar to our technique in goals and overall strategy, but leverag-
ing Scala’s type system and overload resolution instead of a macro
system. With LMS, a programmer writes expressions that resemble
Scala expressions, but the type expectations of surrounding code
cause the expressions to be interpreted as AST constructions in-
stead of expressions to evaluate. The constructed ASTs can then
be compiled to C++, CUDA, JavaScript, other foreign targets, or
to Scala after optimization. AST constructions with LMS benefit
from the same type-checking infrastructure as normal expressions,
so a language implemented with LMS gains the benefit of static
typing in much the same way that a Racket-based language can
gain macro extensibility. LMS has been used for languages with
application to machine learning (Sujeeth et al. 2011), linear trans-
formations (Ofenbeck et al. 2013), fast linear algebra and other
data structure optimizations (Rompf et al. 2012), and more.

The Accelerate framework (Chakravarty et al. 2011; McDonell
et al. 2013) is similar to LMS, but in Haskell with type classes and
overloading. As with LMS, Accelerate programmers benefit from
the use of higher-order features in Haskell to construct a program
for a low-level target language with only first-order abstractions.

The Terra programming language (DeVito et al. 2013) takes an
approach similar to ours, as it adopts an existing language (Lua) for
compile-time manipulation of constructs in the run-time language
(Terra). Like Racket, Terra allows compile-time code to refer to
run-time names in a way that respects lexical scope. Terra is not
designed to support transcompilation, and it compiles to binaries
via Terra as a fixed core language. Another difference is Terra’s
emphasis on supporting code generation at run time, while our em-
phasis is on separation of compile and run times.

CGen (Selgrad et al. 2014) is a reformulation of C with an S-
expression-based syntax, integrated into Common Lisp. An AST
for source-to-source compilation is produced by evaluating the core
forms of CGen; this differs from our approach, where run-time
Racket core forms are not evaluated. Common Lisp’s defmacro
construct is available to CGen programs for defining language ex-
tensions; Racket’s lexical-scope-respecting macros compose in a
more robust manner. Racket’s macro expansion also tracks source
locations, which would be a useful feature for a CGen-like tool.
CGen uses the Common Lisp package system to implement sup-
port for locally and explicitly switching between CGen and Lisp
binding contexts, so that ambiguous names are shadowed; Racket
does not include a similar facility, although approximations thereof
should be implementable within Racket.

SC (Hiraishi et al. 2007) is another reformulation of C with an
S-expression-based syntax. It supports language extensions defined
by transformation rules written in a separate, Common Lisp based
domain-specific language (DSL). The rules treat SC programs as
data, and thus SC code is not subject to Lisp macro expansion (as
in our solution) or Lisp evaluation (as in CGen). Fully transformed
programs (in the base SC-0 language) are compiled to C source
code. SC programs themselves have access to a C-preprocessor-
style extension mechanism via which there is limited access to
Common Lisp macro functionality.

6. CONCLUSION
We have described a generic approach for having Racket host the

front end of a source-to-source compiler. It involves a proper em-
bedding of the hosted language into Racket, so that Racket’s usual
language definition facilities are exploited rather than bypassed.
Notably, the macro and module systems are still available and, if
exposed to the hosted language, provide a way to implement and
manage language extensions within the language. Furthermore,
tools such as the DrRacket IDE work with the hosted language, rec-
ognize the binding structure of programs written in the language,
and can usually trace the origins of macro-transformed code.

Among the various ways to arrange for a source-to-source com-
piler to gain access to information about a program, our approach
is most appropriate when the language’s macros target a specific
foreign core language and runtime library and when it is useful to
avoid “extra-linguistic mechanisms” (Felleisen et al. 2015) by hav-
ing the language itself communicate its execution requirements to
the outside world. Such communications may be prepared as sub-
modules, which can also contain an AST in the appropriate core
language and representation, allowing one source language to sup-
port multiple different targets. Racket’s separate compilation and
build management help limit preparation work to modules whose
source files or dependencies have changed.

Racket’s macro system is expressive enough that the syntax and
semantics of a variety of language constructs can be specified in a
robust way. Given that typical macros compose safely, and given
that hygiene reduces the likelihood of name clashes and allows
macros to be defined privately, pervasive use of syntactic abstrac-
tion becomes a realistic alternative to manual or tools-assisted writ-
ing of repetitive code. Such abstraction can benefit both the code-
base implementing a Racket-based language, as well as programs
written in a macro-enabled Racket-based language.

Acknowledgements Carl Eastlund provided information about the
implementation of Dracula. Magne Haveraaen, Anya Helene Bagge,
and anonymous referees provided useful comments on drafts of
this paper. This research has in part been supported by the Re-
search Council of Norway through the project DMPL—Design of
a Mouldable Programming Language.

Bibliography
Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev,

Tobias Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. Pycket: A
Tracing JIT For a Functional Language. In Proc. ACM Intl. Conf.
Functional Programming, 2015.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17. A Language and Toolset for Program Transforma-
tion. Science of Computer Programming 72(1-2), pp. 52–70, 2008.

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell,
and Vinod Grover. Accelerating Haskell Array Codes with Multicore
GPUs. In Proc. Wksp. Declarative Aspects of Multicore Programming,
2011.

Hans Chalupsky and Robert M. MacGregor. STELLA - a Lisp-like lan-
guage for symbolic programming with delivery in Common Lisp, C++
and Java. In Proc. Lisp User Group Meeting, 1999.

ClojureScript. 2016. https://github.com/clojure/clojurescript
Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek.

Terra: A Multi-Stage Language for High-Performance Computing.
ACM SIGPLAN Notices 48(6), pp. 105–116, 2013.

Carl Eastlund. Modular Proof Development in ACL2. PhD dissertation,
Northeastern University, 2012.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishna-
murthi, Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Mani-
festo. In Proc. Summit Advances in Programming Languages, 2015.

David Fisher and Olin Shivers. Building Language Towers with Ziggurat.
J. Functional Programming 18(5-6), pp. 707–780, 2008.

Matthew Flatt. Submodules in Racket: You Want it When, Again? In Proc.
Generative Programming and Component Engineering, 2013.

Matthew Flatt, Ryan Culpepper, Robert Bruce Findler, and David Darais.
Macros that Work Together: Compile-Time Bindings, Partial Expan-
sion, and Definition Contexts. J. Functional Programming 22(2), pp.
181–216, 2012.

Tasuku Hiraishi, Masahiro Yasugi, and Taiichi Yuasa. Experience with SC:
Transformation-based Implementation of Various Language Extensions
to C. In Proc. Intl. Lisp Conference, pp. 103–113, 2007.

Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench.
Rules for Declarative Specification of Languages and IDEs. In Proc.
ACM Conf. Object-Oriented Programming, Systems, Languages and
Applications, pp. 444–463, 2010.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A Domain Spe-
cific Language for Source Code Analysis and Manipulation. In Proc.
IEEE Intl. Working Conf. Source Code Analysis and Manipulation, pp.
168–177, 2009.

Linj. 2013. https://github.com/xach/linj
Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben

Lippmeier. Optimising Purely Functional GPU Programs. In Proc.
ACM Intl. Conf. Functional Programming, 2013.

Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Püschel. Spiral in Scala: Towards the Systematic Construction
of Generators for Performance Libraries. In Proc. Generative Program-
ming and Component Engineering, 2013.

Parenscript. 2016. https://common-lisp.net/project/parenscript/
Jon Rafkind and Matthew Flatt. Honu: Syntactic Extension for Algebraic

Notation Through Enforestation. In Proc. Generative Programming
and Component Engineering, pp. 122–131, 2012.

Pedro Ramos and António Menezes Leitão. An Implementation of Python
for Racket. In Proc. European Lisp Symposium, 2014.

Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs. In
Proc. Generative Programming and Component Engineering, pp. 127–
136, 2010.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jo-
vanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. Optimizing Data Structures in High-Level Pro-
grams: New Directions for Extensible Compilers Based on Staging. In
Proc. ACM Sym. Principles of Programming Languages, 2012.

Kai Selgrad, Alexander Lier, Markus Wittmann, Daniel Lohmann, and
Marc Stamminger. Defmacro for C: Lightweight, Ad Hoc Code Gener-
ation. In Proc. European Lisp Symposium, 2014.

Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf, Has-
san Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and Kunle
Olukotun. OptiML: An Implicitly Parallel Domain-Specific Language
for Machine Learning. In Proc. Intl. Conf. Machine Learning, 2011.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt,
and Matthias Felleisen. Languages as Libraries. SIGPLAN Not. 47(6),
pp. 132–141, 2011.

Danny Yoo and Shriram Krishnamurthi. Whalesong: Running Racket in
the Browser. In Proc. Dynamic Languages Symposium, 2013.

https://github.com/clojure/clojurescript
https://github.com/xach/linj
https://common-lisp.net/project/parenscript/

	1 Introduction
	2 Magnolisp
	3 Translated-Language Hosting
	3.1 Modules and #lang
	3.2 Defining Surface Syntax
	3.3 Storing Metadata
	3.4 Expanding Macros
	3.5 Exporting Information to External Tools
	3.6 Run-Time Support

	4 Evaluation
	4.1 Language Design Constraints

	5 Related Work
	6 Conclusion
	Bibliography

