Implementing Jini Servers without Object Serialization
Support

Tero Hasu
Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory
tero. hasu@ut . fi

Abstract

Jini is a technology that provides a framework for discawgiand providing ser-
vices in ad hoc network environments. One of the core idediofs that services
are accessed through a Java object supplied by the provideseovice. To distribute
such objects between processes and hosts, they need tonblatted into a com-
mon transport format; Sun’s Jini implementation uses tha &dject serialization
mechanism for making the translation. However, the seatibn functionality is not
available on all Java virtual machines, not to mention naraduntime environments.

Jini clients cannot be implemented without serializatioport, as to use a ser-
vice they need to be able to deserialize the object via whietservice is accessed.
Jini servers, on the other hand, do not need to run any coddisdy the client,
and serialization capability is not essential on the serVénen serialization is un-
available, so is RMI (Remote Method Invocation), as RMIeglon the serialization
mechanism for passing objects by value in remote procedll® cSun’s Jini im-
plementation uses RMI for most of the communication betwe@mt and server.
Nevertheless, the use of RMI is not required by the Jini digation, and some other
remote procedure call mechanism may be used to facilitateramication. In this
paper, we explain how to implement Jini servers such that¢hea be run on a plat-
form without either RMI or object serialization support.

KEYWORDS: Java, Jini, object serialization, RMI, XML-RPC

1 Introduction

Mobile technology is becoming more commonplace, and theeeldt of interest in using
it to access services in mobile, ad hoc environments. Jaidiava-based technology that
provides a framework for locating and using services in adyie environment, and open,
Java-enabled devices are becoming more common. It is p@gbit Jini will become
popular along with the devices, and if that should happenatiilability of a Jini interface

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

or lack thereof might significantly affect the popularityagervice. It might thus become
a common requirement to include a Jini interface in both neevexisting services, either
as the sole access method or as an alternative one.

The Jini implementation currently available from Sun regsiieither a J2SE (Java 2 Stan-
dard Edition) or J2EE (Java 2 Standard Edition) runtimeremwvnent. (In the context of
this paper, there are no significant differences betweetwbelatforms, and for the rest
of this paper, we shall simply use J2SE to refer to both of thdfra service does not al-
ready run under J2SE, porting it to J2SE or running the Jimitionality separately under
J2SE is not necessarily the best option. Perhaps the maigttdforward way to add Jini
support would be to link the server executable against arythat contains the necessary
functionality for allowing Jini clients to locate the sere| and to acquire the object that
contains the Java interface to the service.

Running a large Java runtime may not even be an option wheaonies to resource-
constrained devices such as PDAs, mobile phones, and apgdia In such cases one
could consider running Jini on a separate, more powerfulkcdebut especially when on
the move, such a device may not always be accessible. Tordearthe availability of
the services offered by a device, it is perhaps best to rurfulictionality on the same
device, so that the services offered by the device are désable whenever the device is
accessible, and only then. To accomplish this with resecocstrained devices, a Jini im-
plementation that runs on a lightweight JRE (Java runtimgr@mment), or even without
a JRE of any kind, is required.

In this paper, we look into how to implement Jini-enabledvees such that they do not
need to support complex, Java-specific technologies tieabialy available on the most
capable of JVMs. In particular, we shall concentrate on aibgerialization and RMI,
both of which are utilized by Sun’s reference implementatd Jini. Both technologies
are rather complicated, and implementations tend to be.ldfgr instance, the total size
of the RMlI-related Java class files contained in the J2SEL Tuhtime is in excess of
half a megabyte, and that figure includes neither the deperete of RMI or any runtime
storage requirements. Therefore it is no wonder that, fetaince, the popular Connected,
Limited Device Configuration (CLDC) of Java 2 Micro Editiod2ME) does not include
either RMI or serialization, although their exclusion mdsoahave been due to security
concerns [9]. We believe that when knowing how to impleméamtfdnctionality without
the two technologies, it should be perfectly feasible tolangent Jini servers that do not
even require a Java runtime.

One of the challenges in our work was determining what pdrdsocould be implemented
without object serialization and RMI. Early on, we conclddeat Jini clients require object
deserialization and dynamic class loading support, whidedrthem out, and we then
focused on servers alone. An advantage that Jini serveesifdliat they can have their
own code executed in a client, and the client is likely to hapewerful JRE. This helps in
overcoming situations where essential functionality iauailable on the server side, and

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

indeed, we believe that it is possible to implement Jini isexythat fully conform to the
Jini specification without having serialization supporttba server side.

We also needed to find alternative ways to implement the immality for which serializa-
tion and RMI would have been a natural choice. For instaneajecided to apply the plat-
form independent XML-RPC technology instead of RMI for réenprocedure calls. When
we found serialization to be essential for certain fundiliiy, we needed to determine how
to have the server and client share responsibilities inempinting that functionality. To
get confirmation that our solutions work in practice, we ¢nrged a proof-of-concept im-
plementation that utilizes some of those solutions. Wel slealcribe our implementation
later on in this paper.

We shall follow this introduction by discussing related wan Section 2. After that,
we have Section 3 that gives background information reggrtéchnologies particularly
relevant to this paper. In Section 4 we go through the funelity that is required of
Jini conformant entities, and in Section 5 we then discuss tadmplement some of that
functionality without using the Java object serializatimechanism on the server side. In
Sections 6 and 7 we describe our prototype implementatamsye then evaluate them in
Section 8. Finally, in Section 9, we present our conclusions

2 Related Work

The component in Jini that allows the registration and disop of services is called a
lookup service (LUS). In this paper, we present a LUS implementation thaisdaot use

RMI. There are two commercial LUS implementations callecatidd [8] and CMatos [6]

by PsiNaptic [5] that likewise do not require RMI functioialfrom the underlying plat-

form.

JMatos runs on a variety of Java platforms, including Pexkdava, J2SE, and J2ME.
Presumably, however, not just any J2ME implementation ddll but it must be one that
supports server-side sockets, which as of yet are not alaitan most J2ME-equipped
devices currently on the market. Server sockets are ratjforamplementing the Jini dis-
covery functionality, and possibly also for implementing lATTP server or some other
mechanism that allows Java class files to be dynamicallyelddim the host that is run-
ning the LUS.

CMatos is written in C, and does not require a Java runtimdl;aamy requirement for
executing Java bytecode in the LUS host has been removed fii§. being so, it should
also not be necessary to do any object serialization on tirersside, which provides some
confirmation to our suspicions to that effect.

JMatos and CMatos are closed source, and there does not apfeamuch information
available as to exactly how they have been implemented. ,Tditlwugh we present an

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

implementation with similar goals in this paper, we will maotmpare our implementation
with those of PsiNaptic. At most we could compare externeldieg such as performance
and memory consumption, but we have chosen not to do so dimdaonstraints.

3 Background

This section provides some background information reggrtiechnologies that play an
important role in the rest of this paper.

3.1 Java Object Serialization

Some Java platforms provide built-in object serializasopport, as specified in [10]. The
serialization mechanism facilitates the translation geobstate data to bytes and vice
versa. Serialized objects do not contain the definitionfefassociated classes and inter-
faces, and thus, when deserializing an object, it is nepgtsaither have the relevant type
definitions preloaded, or to know the location from whichdad the classes and have the
capability to do dynamic class loading.

By default, any classes to load at runtime are looked for bycthss loaders created auto-
matically by the JVM, from known locations on the local filssym. Typically, the location
of the classes of a locally installed application is spedibig setting thaCLASSPATH en-
vironment variable, which tells the so-callegstem class loader the location from which
to automatically load the application classes as requiteherally, we shall refer to the
parameter that tells a Java class loader from where to findifieition of the class to load
as thecodebase of that class, regardless of which class loader is being il

3.2 Remote Method Invocation

Remote Method Invocation (RMI) [2] is @ mechanism in whicljeats that reside in dif-
ferent JVMs may invoke methods on each other [7]. RMI usea dhject serialization for
passing objects by value. When passing objects by “refefeserialization is still used
for transferring so-callegtub objects that have the same interface as the “referred” bbjec

Partly due to the heavy use of the Java serialization mesimriRMI is rather tightly

coupled with Java, and it would probably be infeasible tolement it for other platforms.
On the other hand, when Java and RMI is available throughalistabuted system, it
makes interaction between remote objects rather conveaieheasy to implement. For
instance, RMI transparently equips clients with the abild download implementation
code. ltis therefore not a surprise that Sun’s Jini impletaigon is built on top of RMI.

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

3.3 Jini

Jini [3] is a distributed computing framework that consist$ibraries and server programs
that provide a variety of functionality. Among other thindi offers support for leasing
of shared resources, transactions, and service admtrostraut it is perfectly possible to
construct Jini services that do not make direct use of arly fuectionality. That function-
ality is not within the scope of this paper, as we are rathengong on what is required to
offer services via Jini when the server platform is lackiegtain features.

Jini provides support for registering and looking up seagicWe refer to entities offering
services as servers, and those using them as clients; issslyp® for the same entity to be
both a server and a client. A set of all the Jini clients andessrin a network is commonly
referred to as dederation. To enable clients to locate services, there must be one or
more lookup servers in the network, and also within the roadi radius when multicast
discovery is being relied on to locate one. If one does nottw@nisk a LUS not being
available, it is safest to run a LUS along with any services time is providing.

When a service is registered with a LUS, a Java object thakeimgnts the service API
must be supplied to the LUS. A client that wants to utilizeskevice must first acquire the
object from the LUS, as the service is accessed via that bldjee the rest of this paper,
we shall refer to such an object apraxy, regardless of whether the object talks to a server
or implements the whole service by itself.

3.4 XML-RPC

XML-RPC is a platform-independent remote procedure calPQR mechanism, whose
specification is in [12]. XML-RPC defines a protocol whereleatessage is an HTTP-
POST request, and the body of the request is in XML formatcé&iuare call parameters
and return values must be mapped to the limited number oftgpés and structures that
XML-RPC supports. Any transparent translation betweenddia types of XML-RPC

and those of a programming language are implementatiorifigpe¥ML-RPC is rather

language-agnostic, and there are implementations foletyaf languages and platforms.

4 Requirements for Jini Federation Members

This section discusses the functionality that the entgaaticipating in a Jini federation are
required to have or implement. A Jini federation typicalgnsists of a number of clients
and servers, and some of the servers must act as lookupséemable clients to locate
services. We will cover the different types of entities safely.

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

4.1 Jini Clients

The proxy of a lookup service is sent to the client during tiakup server discovery pro-
cess, which is based on a custom protocol. For all othercasythe proxy is acquired by
the client by a method call to the LUS proxy. Every LUS proxyplaments thenet . -
jini.core.l ookup. Servi ceRegi strar API. Regardless of which of these two
methods is used to acquire a proxy, the proxy object needs totwerted from the trans-
port format into a Java object instance within the clientimg. The class definitions of the
deserialized classes are loaded from the LUS or some otharsd&herefore Jini clients
require deserialization and dynamic class loading cattiakil

Not only does the client need to have the capabilities reguloy the LUS proxy, but it

should also be able to execute any code contained within ey [if it wants to access

the service associated with that proxy. A client that dogsumoon a J2SE environment is
likely to be excluded from a large number of services, aslaoed clients with restrictive

security policies that prevent certain operations evehaffunctionality would otherwise
be available. Generally, the more APIs and the fewer réitns a client platform has, the
more likely is it to be able to access a service that it comessac

However, it could be argued that to be Jini-enabled, a chesrely needs to be able to dis-
cover lookup servers, and to acquire and deserialize LUSgs0Whether it can actually
use a proxy depends on the proxy not requiring capabiliiasthe client does not have.

4.2 Lookup Servers

A Jini lookup service must provide the following services:
1. Performing its part of the LUS discovery process. BothuhiEast and multicast
discovery protocols must be supported.

2. Maintaining information about registered services; ih@rmation must persist
across server restarts.

3. Accepting service registrations, renewals, and ddregjens. Registrations must be
deleted if not renewed in a timely manner.

4. Responding to queries regarding registered services.

5. Allowing registered clients to update the attribute®asded with services that they
have registered.

6. Notifying clients regarding changes in the service dadabif the clients have sub-
scribed to such notifications.

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

Let us now consider how the implementation of the above sesvtan be split between
the server and its proxy. Item 1 is something that must bentaieee of at the server
side, as the proxy is not used during discovery. Item 2 mkswdise be handled by some
server, as the database contains information about naittlgnts, and cannot be local to
each proxy object; the database server would typically bddbkup server itself. Iltems
3-6 are such that they can be requested by the client via twy gkPl, and therefore
some of the implementation must be in the proxy. The databass# also be accessed
by the implementation, except perhaps with item 4 that owiycerns queries, and not
modifications to the database. If all the data was cachedeirltent side, and there was
an update notification mechanism in place to ensure thattigecstays current, then item
4 could be implemented fully within the proxy. Apart fromgtpossible exception, items
3-6 all require functionality both in the proxy and in thesar

If a lookup server was weak in terms of performance, the impletor would probably
want to offload as much functionality as possible to the prdrysuch a case, the server
would probably only handle discovery, data storage, dmietif expired service entries,
and the originating of events regarding changes in the datbEverything else can be
done in the proxy. According to [8], this is the approach kg JMatos. If, on the other
hand, the server had ample processing power and capabititien the proxy could be a
mere stub that would just translate API calls into requesig & the server. Sun’s Jini
implementation takes this approach; the proxy is just an BiMlb. These approaches are
the two extremes, but naturally the functionality can béridhigted in a more even manner
as well.

When setting up a lookup service to run on a resource-cansttadevice, perhaps to en-
sure that the device and its services can be discovered, mie hope that some of the
services listed above would be optional; however, that igeally the case. In particular,
one might want to refuse registrations from external sesji@s the extra work involved
might be prohibitive on low-powered devices. However, tineéspecification does not ap-
pear to provide any way to refuse a registration. Beevi ceRegi st r ar method that
allows registration is

public net.jini.core.lookup. ServiceRegistration register(
net.jini.core.l ookup. Serviceltemitem
| ong | easeDurati on)
t hrows java.rm . Renot eException

Returningnul | to indicate that no registration was made is not an optioarghy the Jini
specification. One could always throviranot eExcept i onto indicate that registration
may have failed, but the client might just keep retrying, athiould result in a lot of
unnecessary work by the client. This is obviously not désiraand there thus does not
appear to be a decent way to refuse registrations.

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

4.3 Other Jini Servers

In the case of application-specific services, those crgatiservice get to decide what the
server does, and how it is accessed. Therefore the desi§tiee application is the one

who decides what is required of the server. What is typicatyuired is some method for
the proxy to communicate with the server, but we will not spate on what else might be
required. Depending on the application, it may even be tlsatr@ce can be implemented
fully within its “proxy”, in which case a corresponding senis not required at all.

5 Avoiding Server-Side Object Serialization

In Sections 4.2 and 4.3, we explained what functionalityeguired from Jini servers. In
this section, we discuss how such functionality can be plexvif the underlying platform

does not provide object serialization support. As previousentioned, this also means
that we cannot use RMI. We shall mainly concentrate on lodargers, as we know what
functionality is required of them. The same or similar solus may or may not apply to
an application-specific server, depending on what the egipin is.

5.1 Lookup Server Discovery

In Jini, there are three different discovery protocols: ticakt request protocol, multicast
announcement protocol, and unicast discovery protocolmraur point of view, the good
point is that none of the protocols utilizes RMI. Insteadalhof them, a simple, custom
protocol is used, with TCP and/or UDP as the network protoddie drawback is that
messages of the protocols are composed of serialized Jgesobnd primitive data types.
To construct and interpret such messages, even if the los&yer is not capable of full
object serialization, it still needs to be able to undemtand produce the serialized forms
of the following Java objects:

e int
e java.lang. String
e net.jini.core.lookup. ServicelD
We believe it to be feasible to implement the required radjras the above objects are

relatively simple. However, we do not feel qualified to givpraper estimate as to the
amount of work involved, as we have not implemented suchrresit

During discovery, a serialized proxy object for the LUS mhbstsent to the client. If
the lookup server has no serialization capability, it mustenbeen serialized in advance,

8

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

presumably by the LUS build process, and stored somewheaelasa byte array. See
Section 5.2 for advice on how to perform the serialization.

5.2 Proxy Serialization

The LUS proxy that is sent from a lookup server to a client mhestwrapped in a
java.rm . Marshal | edChj ect, as that is what the client expects to receive. The
reason for the use of such a wrapper is presumably that irtiaddio a serialized
object, aMar shal | edCbj ect also contains the codebase information for that ob-
ject. As the codebase must be known during deserializattomakes sense to use a
Mar shal | edObj ect also when sending objects between a lookup server and itg,pro
although the codebase information could also be passestetitiy, if required.

As far as we know, there is no method in any common JRE thatduoake it convenient
to redefine the codebase of a class that has been alreadd |ddure is also no method in
Mar shal | edObj ect that could be used to set the codebase associated with thpeda
object. However, there is a JVM property calledva. r ni . server. codebase that
will be used as the codebase for all classes loaded froBliASSPATHand subsequently
marshalled. We can either set the property to reflect thebasde or, when creating the
object to be wrapped, actually load the instantiated clamss & location that will also be
accessible by clients who download the serialized objduat Tocation will then be stored
within theMar shal | edCbj ect as the codebase.

The following code snippet demonstrates one way to load claassNane from code-
basecodeBase, to create an instance of it using the default constructdiidwwe are
assuming it has), and then to write the object to the outpeastst r eamin a serialized
form. Qur Cl assLoader could for instance be a subclassj@&va. net . URLC ass-
Loader, with no changes apart from making sure that fiendCl ass(St ri ng)
method has such permissions that we can call it.

URL url = new URL(codeBase);

Cl assLoader | oader = new QurC assLoader(url);

Class clazz = | oader.findd ass(cl assNan®e) ;

Constructor con = clazz. get Constructor(new C ass[0]);
bj ect obj ect = con. new nstance(new Object[0]);

Mar shal | edObj ect nb = new Marshal | edObj ect (obj ect);

bj ect Qut put Stream out = new Obj ect Qut put Strean(stream;
out.witeObject(m);

out. flush();

For all the services registered with a LUS, the lookup semvest store the proxy objects
in persistent storage. Any services that are registereldeasdrver side can be serialized
in the manner described above, at build time, on a platforpalgie of Java object serial-
ization. Those services that are registered by clients easehialized at run time within

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

the LUS proxy that runs on the client side, simply by wrappimg service proxy within a
Mar shal | edQbj ect and then serializing.

5.3 Service Lookup

During a service lookup, a client asks the LUS proxy for onenore services that match
a template supplied by the client. The proxies of the matrkervices are then returned
to the client. In Section 5.2 we discussed how the proxiesbeaprepared so that they
are ready for sending to the client. Let us now consider hosetect the services whose
proxies are to be sent. TI8er vi ceRegi st r ar methods that allow service lookup are
shown below.

public java.lang. Obj ect

| ookup(net.jini.core.lookup. ServiceTenplate tnpl)
t hrows java.rm . Renot eException

public net.jini.core.|ookup. Servi ceMat ches
| ookup(net.jini.core.lookup. ServiceTenpl ate tnpl,
i nt maxMat ches)
t hrows java.rm . Renot eException

Let us take a closer look &er vi ceTenpl at e, as that is what we need to compare to
each of the records of a service database. In the discussibfotlows, we shall frequently
refer to the templates and the records being comparesrei€e templates and service
items, respectively. ASer vi ceTenpl at e has the following properties:

enet.jini.core.entry. Entry[] attributeSetTemplates
e net.jini.core.l ookup. Servi cel DservicelD

e java. |l ang. C ass[] serviceTypes

In each of the above, mul | value serves as a wildcard that matches every service item.
Wildcards can be significant in terms of performance. Fadiaimse, if we found that the
vast majority of templates never contained any attributessy we would perhaps want to
avoid caching of attributes within the proxy, as that wouldrease memory consumption
on the client side without giving us much benefit. If, on theesthand, lookups with
attributes were very frequent, then there would be a lotaffiergenerated due to attribute
lookups if no caching was done. Expected usage patternddsbeuconsidered while
implementing caching, or one might even want to implemeapéde caching. However,
discussing complex caching schemes is beyond the scopis piber, and we will not go
into any more detail regarding caching here.

10

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

When matching a service template to a service item, it isiplesto do everything on

the client side. It is also possible to do everything on thweseside, with the possible
exception of attribute set comparisons. Performing sonteeftomparisons at the client
and some at the server is also an option, but one that we shalistuss here, for brevity.

Perhaps the simplest alternative is to do all the matchinipewlient, within the proxy, as
we are assuming here that the client is powerful and capdlderializing objects. If we
simply ensure that we have an up-to-date copy of the senatabdse within the proxy,
perhaps by asking the server to notify us regarding any databhanges (see Section 5.5),
we can deserialize objects and utilize their methods tosacitir properties or to perform
equality checks, for instance.

A more complicated approach is to attempt to resolve lookepsrely on the server
side. In order to do that, both the template and the databasst Ime in such a format
that the server is capable of performing the comparisond. ukeconsider each of the
Ser vi ceTenpl at e properties separately:

Service identifiers To compare service identifiers, one can simply do a byte casga
between the 16-byte service identifiers. The identifier dateormally wrapped in
aSer vi cel Dobject, but the 16-bit value can be extracted and conveatedolyte
array before passing it to the server.

Service types One can simply use reflection to extract all the types of serproxy ob-
ject, including interfaces and superclasses. If the fullglified names are then given
to the server as ASCII strings, the server merely needs forpebytewise compar-
isons between the strings to determine whether a serviddhgs oequested type.

Attribute sets An Ent r y can be thought of as an attribute set, with each of the fields of
the entry being an attribute that belongs to the set. For aaig anmatch a template,
the class of the template must be the same as, or a super€ldbe olass of the
entry [11]. We can handle the type comparisons similarlynathé case of service
types. For evergnt ry in a service template, we must have the fully qualified name
of its class. For every Entry in a service item, we must knosvrtame of its class,
as well as all superclasses.

During matching, we would also have to establish whetherrdry dnas a match-
ing field for each of the fields in a template entry. Field eijyak defined by
Mar shal | edObj ect . equal s(Obj ect) , which states that the serialized rep-
resentations of the objects within must otherwise matchthat any differences in
codebase annotations must be ignored [11]. If it was feadtbltake a serialized
object and to remove the codebase annotations, then we sioybtly store the result
at the lookup server, and do a byte comparison to determinaligg However, we
have not determined what is involved in the removal of theotations, and that is
left for future work.

11

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

5.4 Service Database Queries and Updates

Apart from the lookup methods, Ser vi ceRegi st rar also has a number of other
methods that can be used to query a service database. Thebe dgaplemented in a
manner similar to what was described in Section 5.3. Thee ial a facility for setting
and modifying service attribute sets; these can likewistédmaled similarly, but if any
database changes are actually caused, then those changebempropagated from the
proxy to the database server. For queries, it may not be s&get contact the server if
sufficient caching has been done to answer the queries.

5.5 Service Database Update Notification

The Ser vi ceRegi strar API provides a facility that clients may use to ask for noti-
fication regarding service database changes. Thus far iisaussion, it has typically
been the proxy that must contact the server; however, tocimg@ht the notification facil-
ity, it must also be possible for the server to contact anyipsothat have registered for
notifications. Unless one wants to keep a connection opeaddong as such registra-
tion subscriptions are in effect, there must be a mecharosithé server to connect to the
client. The proxy could, for instance, start listening toeatain port for connections, and
supply the contact information to the server when subsugibi

Once implemented, the notification functionality can befuisot only for clients, but also
within a lookup server. If service information is being cadhthe notification mechanism
can be used to tell LUS proxies to update their cache whemtbemation gets updated.
Of course, if no caching is used, and the client does not siblesto notifications, the
server does not need to be able to initiate contact with trythat resides on the client.

5.6 Communication Between a Jini Server and Its Proxy

Since we are looking at a situation where RMI is not availatblere must be an alternative
method of communication between a proxy and a server, utilesntire service is imple-
mented within the proxy. One possibility is to always taigmplication-specific, custom
protocols, and especially in a resource-constrained @mvient such an approach may be
the best as it allows for implementations optimized for dipalar purpose.

However, since RMI is an RPC mechanism, another RPC mechasiperhaps the most
natural replacement for RMI. One of the most lightweight & @QRsolutions is XML-RPC,

which we briefly introduced in Section 3.4. The benefit of XNRRC in this context is

that it should be suitable for a variety of Jini servers, agl@mentations are available for
a number of platforms, and at least the simpler implemeoriatiend to be small, which
makes XML-RPC fairly well suited even for hosts with littleosage space. If one imple-
mented the same Jini server for a number of different platdoithen the ability to use the

12

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

same RPC interface in each of them would make it an option eothes same proxy to
access each server.

5.7 Service Registration

Since a Jini client must have object serialization capt#dsli it is normally not a problem
that when registering a service with a LUS, its proxy must éreaized within the LUS
proxy. Now, we have been discussing Jini servers that doaaplire serialization capabil-
ities, yet the services they provide must also be registerdda LUS to be found. Since
those servers cannot use the standard Jini mechanism fetergny themselves with a
LUS, there must either be some other entity that takes cateeakgistration on their be-
half, or there must be a different method for registeringn8of the possible, non-standard
registration solutions include:

e Have the LUS itself register the services, either using alfpet of services, or have
the LUS acquire a list from a known place.

e Run the services in the same process as the lookup servancnde an API in the
server that allows registration.

e Provide a custom registration facility that can be acce&sed a separate process
or even from a remote host. Such a facility could also bezetdiby the LUS proxy
to perform registrations requested by clients. For ingaman APl accessible via
XML-RPC could provide a suitable registration interface.

6 Jini Lookup Service Implementation

As a part of our work on this topic, we implemented the begigsiof a Jini LUS. Ba-
sically, we wanted to implement just enough of the functiitymdo do a lookup and to
acquire the service object of the Hello World service thadressented in Section 7. To be
more specific, we implemented one of the lookup methods, tiglomission that it does
not support attribute sets. We had the LUS itself registetihllo World service, which is
one of the registration options mentioned in Section 5.7.

As we implemented our services, we applied some of the solsifpresented in Section 5.
We utilized the Apache XML-RPC implementation [1] for commizations between the
proxy and the server. We had the lookup server listen to a kngat for XML-RPC
connections. The port number was hardcoded within the Lid®ypbut the same was not
done with the address of the LUS host. We decided that the Lid8yp-odebase would
reside on the same host as the server, and therefore thwifadlcode within the LUS can
be used to determine the lookup server host:

13

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

Class clazz = getd ass();

Prot ecti onDormai n domain = cl azz. get Prot ecti onDomai n() ;
CodeSource cs = domai n. get CodeSour ce();

URL url = cs.getLocation();

String host = url.getHost();

As described as one possible approach in Section 5.3, wivedslmokups fully on the
server side. The server has the following lookup API, whéee garameter and return
value types were chosen so that they are directly suppoytégpache XML-RPC.

public byte[] | ookup(byte[] serviceld, Vector types)

In addition to making XML-RPC API calls, all that was left fire proxy was to translate
the parameters and return values so that they correspora et vi ceRegi st rar
lookup API. To support this scheme we wrote a build tool thatects information re-
garding proxy objects; for instance, to collect the fullyatified type names we used the
following code:

static void getAll SuperC asses(List list, Oass clazz) {

for (;;) {
clazz = clazz. get Supercl ass();
if (clazz == null)
br eak;

l'ist.add(clazz);

}

static void getAllInterfaces(List list, dass clazz) {
Class[] ifaces = clazz.getlnterfaces();
for (int i=0; i<ifaces.length; i++) {

Class iface = ifaces[i];
if (list.contains(iface))
conti nue;

Iist.add(iface);
getAllInterfaces(list, iface);

}

static List getAll Types(C ass clazz) {
List list = new LinkedList();
list.add(clazz);
get Al | Super C asses(list, clazz);
getAllInterfaces(list, clazz);
return |ist;

We targeted all of our prototype implementations for theB)p&tform. The client JVM is
not required to have the XML-RPC classes installed locahg; system, application, and

14

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

service interface classes are enough. The proxy classtaafias well as the definitions
of any classes used within the proxy (such as the XML-RPCemgphtation classes) are
retrieved from the lookup server.

7 Hello World Service Implementation

As already mentioned, we implemented a simple Jini seriaewe registered with our
LUS implementation. The service is called Hello World, atedgroxy object provides a
method that returns the string “Hello World!” to the call@his functionality would have
been easier to implement fully within the proxy, but insteaglalso implemented a server
that sends the string to the proxy using XML-RPC. The XML-R&&Gmunications were
set up in the same manner as with the LUS described above.

The following code snippet should give an idea of how the &i&lorld proxy can be
acquired and used to access the service, wiean st r ar is the LUS proxy:

Servi ceTenpl ate tnpl = new Servi ceTenpl at e(
null, // any service ID
new Cl ass[] { Hell owbrl dService. class },
null); // any attribute sets
bj ect proxy = registrar. | ookup(tnpl);
Hel | owbr | dServi ce service = (Hel |l oWrl dServi ce) pr oxy;
Systemout.println(service.getString());

As our lookup server does not support discovery, we “fakbd’discovery by reading the
serialized LUS proxy from a file, instead of receiving it duyithe discovery process, as
follows:

File file = new Fil e(LUS_PROXY_FI LE_NAME) ;
Servi ceRegi strar registrar;
I nput Stream i nput = new FilelnputStrean(file);

try {
bj ect I nput Stream os = new Obj ect | nput Strean(i nput);
Mar shal | edObj ect mo = (Marshal | edObj ect)os. readQbj ect () ;
regi strar = (ServiceRegi strar)no.get();

} finally {
i nput.close();
}

8 Evaluation of the Implementations

As our LUS only implements a small subset of the functiogatkiquired by the Jini spec-
ification, and only makes use of some of the guidelines pteden this paper, it is some-

15

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

what lacking as a proof of concept. Nonetheless, it wouldeHasen infeasible for us
to implement a complete LUS given that we did not have mucle timallocate for the
implementation work.

Our choice of a platform, i.e. J2SE, is also less than penfetttis context, but we chose
it as we deemed that the capabilities of the platform woulttekse the amount of labor
required. Of course, it would have made for a more effectiamfpof-concept to target a
server platform that does not support object serializatidowever, we had to minimize
the amount of work involved.

Hello World is a valid Jini service, albeit a simple one, ardwnstrates that at least certain
kinds of Jini servers can easily be implemented without RMiliject serialization support.
Very little work on the part of the programmer was requiredriplement this simple
service, in part because the Apache XML-RPC library usea'daeflection facilities to
automatically determine which methods to make availabledtling remotely.

It should be reasonably straightforward to port our impletagons for another platform,
assuming that there is an XML-RPC implementation availdbtethat platform. The

Apache XML-RPC software that we used would not be suitabl@llaJava-based imple-
mentations, as it e.g. makes use of reflection, which is raitedle on all JRESs. However,
there are a number of other implementations, such as kXMC-RIP, which is designed

to be run on J2ME environment.

9 Conclusion

In this paper we have discussed how servers can participatdini federation even when
the utilization of a powerful Java platform with Java objeetialization capabilities and
RMIl is either infeasible or undesirable. We have also dbedrand evaluated our prototype
implementations of a partial Jini LUS and a simple Jini seyineither of which require
serialization support, and both of which use XML-RPC indte& RMI for client-server
communication.

Acknowledgements

The author would like to thank Janne Jalkanen for advice,ianmarticular for the idea
of using XML-RPC as an RMI replacement. Thanks are also duRaovan Matei for
providing feedback regarding this work.

16

Ad Hoc Mobile Wireless Networks — Research Seminar on Teheaonications Software, Autumn 2002
HUT TML — Course T-110.557 — Publication ISBN 951-22-630853N 1456-7628 TML-C8
http://www.tml.hut.fi/Studies/T-110.557/2002/papers/

References

[1] Apache XML-RPC.
URL http://xm . apache. arg/ xm r pc/

[2] Java Remote Method Invocation (RMI).
URL http://java. sun. conf products/jdk/rm/

[3] Jini network technology.
URLhttp://java. sun.conljini/

[4] KXML-RPC.
URL http://kxm rpc. enhydra. or g/

[5] PsiNaptic Inc.
URL ht t p: // ww. psi napti c. conl

[6] STEVEN KNUDSEN, SERGE BRACHE; CMatos — Jini services for non-Java devices;
white paper; PsiNaptic; 2002.

[7] ScoTT OAKS, HENRY WONG; Jini in a Nutshell; O’Reilly, USA; ISBN 1-56592-
759-1; 2000.

[8] LAWRENCE (TIiM) SMITH, CAMERON ROE, KNUD STEVEN KNUDSEN; A Jini
lookup service for resource-constrained devices; in 4EHHternational Workshop
on Networked Appliances; Gaithersburg, MD, USA; 2002.

[9] Sun Microsystems, Inc.; Connected, Limited Device Cgunfation Specification Ver-
sion 1.0a; 2000.

[10] Sun Microsystems, Inc.; Java Object SerializationcHjmation Revision 1.4.4; 2001.

[11] Sun Microsystems, Inc.; Jini Technology Core Platfdapecification Version 1.2;
2001.

[12] DAVE WINER; XML-RPC specification; 1999.
URL htt p://ww. xm r pc. conl spec

17

