
Programmatic Building of Models Just for Pretty
Printing

Tero Hasu
Helsinki Institute for Information Technology

PO Box 9800, FI–02015 TKK, Finland
tero.hasu@hiit.fi

Abstract

In-memory object models of programs are commonly built by tools to facilitate pro-
gram analysis and manipulation. We claim that for some applications it makes sense to
construct such models for the sole purpose of pretty printing, and explain the reasoning
behind our claim in this paper. We also describe a tool we havecreated to support this
approach to pretty printing; the tool derives, from an annotated grammar, both an object-
oriented API for model building, as well as corresponding routines for pretty-printing
built models.

KEYWORDS: code generation, grammarware, object-orientedprogramming, pretty
printing, program representation

1 Introduction

Pretty-printing capability is required in tools intended to produce readable source code. There
are a number of ways one might choose to implement pretty printing. In many tools one
requires an abstract syntax tree (AST) of each processed program for analysis and/or manip-
ulation, and in those cases it is natural to write a routine that traverses the AST to emit textual
code. However, when implementing a tool that does not transform programs, but rather reads
in some input and generates anewprogram based on the input, it is far less clear how pretty
printing would best be implemented.

When an AST is not required for code analysis or manipulationpurposes, one may choose
from a number of alternative approaches to pretty printing.In this paper we explore the idea
of constructing an AST-like model of the program anyway, solely for pretty printing purposes.
We talk aboutmodels, as in object models specifying what is to be printed. We avoid talking

1

about ASTs, so as not to imply that we are interested in the abstract syntax of the target
language; we want to know how to print an object, but not necessarily what specific target
language construct it represents. We focus on model construction that is done imperatively
and incrementally, by writing statements that instantiateand add objects into a model, in any
desired order.

The rest of this paper is organized as follows. In Section 2, we discuss our pretty-printing
approach in more detail, and consider potential applications. In Section 3 we introduce a
specific implementation of the approach, by describing a tool we created to facilitate the
implementation of pretty-printable model builders. We look at related work in Section 4, and
conclude in Section 5.

2 Constructive Pretty Printing

We refer to our pretty printing approach asconstructive pretty printing(CPP); with this term
we try to emphasize that the defining characteristic of the approach is that one explicitly
constructs, bit by bit, a model to be printed. The model objects may be of different native
types, and to support incremental model building, they are likely to contain named fields into
which to insert more objects in any desired order.

An alternative way to “construct” a model is to essentially just list its contents, in a declarative
fashion, allowing for variability by letting lists containnon-literal expressions. This approach
is widely used by Lisp programmers at least, and is likely to result in somewhat shorter model
building code than in CPP. Theconvenienceof writing such code depends largely on how
conveniently one can express a named list in the language syntax.

A common code generation approach not involving model building is to use atemplate engine
(e.g., Smarty, Velocity, Cheetah). Intemplate-based code generation[6], one specifies what
to generate using a textual template, but may embed directives within the text to account for
variability. The directives—usually expressed in the engine implementation language—are
expanded by the engine. The concept of template engines is easy to understand, and most
implementations are straightforward to use. These are verydesirable properties, but we still
argue that alternative solutions—such as CPP—are more suitable for some applications. We
believe CPP to be a good approach at least in cases where:

• One prefers to program imperatively. It is natural for people to think in terms of objects
and actions.

• One wants to concentrate on abstract syntax, without worrying about delimiters and
other notation that can be automatically emitted as required.

• The data to be printed is highly variable. For example, a template engine is of little
assistance in printing arithmetic expressions of variablelength and content.

2

• One wants all formatting rules in one place. A major problem with template engines is
that formatting information is spread around all the templates being used, and this can
easily lead to inconsistencies. In CPP, code specifyingwhat to print andhowto print it
is kept separate.

• One requires indentation with variable levels of nesting. With template engines, one
must be very careful with whitespace and line breaks to get the formatting right, and
even then, producing variable levels of nesting gets difficult. In CPP, the semantics to
decide when to indent can be in the model.

• One wants conditional line breaking. If a line is getting toolong, one must knowwhere
it is okay to break it; again, in CPP, there can be sufficient semantics in the model.

• One simply does not want to work with strings. Code with a lot of string manipulation
tends to be tedious to write and hard to read. In CPP, such codecan be isolated in the
printing routines.

One solution that also suits the above cases, but does not quite meet our definition of CPP, is
Builder [3]. It is similar to template engines, but in the Builder case, a template is specified
as Ruby code that programmatically builds an XML document for pretty printing. The for-
matting of the output text is left to Builder. Sample building code and the resulting output is
shown below.

Listing 1: Printing XML with Builder. [3]
Builder::XmlMarkup.new(:target=>STDOUT, :indent=>2).
person { |b| b.name("Jim"); b.phone("555-1234") }

Listing 2: Builder output.
<person>
<name>Jim</name>
<phone>555-1234</phone>

</person>

The Builder approach differs from CPP in that each XML element builder method, by the
time it returns, will have caused the printing of the entire element—no model gets built1. As
a result, one has to specify the entire document at once, in the order in which XML elements
are to appear in the document. CPP is more flexible, but that flexibility comes with overhead
in constructing and traversing models.

3 qretty

To support the use of CPP, we developed a tool calledqretty. It is a Ruby library that makes
it possible to dynamically derive, based on an annotated grammar of a language, an object-

1At time of writing, support for generating DOM-like structures with Builder is planned.

3

oriented API for building models representing expressionsin the language.qretty also pro-
duces code for pretty printing the models according to hintsin the grammar.

3.1 Specifying a Grammar

qretty requires a grammar specification as input. The grammar is specified in Ruby, using a
provided API, and may be annotated with layout-related information. Some tools try to keep
different grammar concerns such as base syntax and layout separate; GPP (see Section 4), for
example, does this by having separate grammar and formatting rules for each non-terminal.
We chose not to do this inqretty to avoid the extra work involved in maintaining multiple
rules per non-terminal.

Below is an example grammar specification, extracted from anas-yet-unreleased tool in
which qretty is used for pretty printing C++ type specifiers; we are using the tool to con-
vert GCC-XML generated C++ interface descriptions into a different format.

Listing 3: A grammar specified in Ruby, us-
ing theqretty API.
crule(:type_spec,
seq(basic(:typename),

opt(" ", :declarator)))
crule(:ptr_declarator,
seq("*", opt(:declarator)))

crule(:ref_declarator,
seq("&", opt(:declarator)))

crule(:array_declarator,
seq(opt(:declarator),

"[", opt(ident(:num)), "]"))
crule(:func_declarator,
seq("(", opt(:declarator), ")",

"(", opt(:funcargs), ")"))
arule(:funcargs,
commalist(:type_spec))

crule(:cv_declarator,
seq(choice(namlit(:const),

namlit(:volatile)),
opt(" ", :declarator)))

crule(:name_declarator,
ident(:name))

arule(:declarator,
basic(:declarator))

Listing 4: An approximate EBNF translation.

type_spec ::=
TYPENAME
(" " declarator)?

ptr_declarator ::=
"*" declarator?

ref_declarator ::=
"&" declarator?

array_declarator ::=
declarator?
"[" NUM? "]"

func_declarator ::=
"(" declarator? ")"
"(" funcargs? ")"

funcargs ::=
type_spec (", " type_spec)*

cv_declarator ::=
("const" |
"volatile")

(" " declarator)?
name_declarator ::=
NAME

declarator ::=
ptr_declarator | ...

qretty includes an API for dynamically generating a set of classes corresponding to a gram-
mar specification. Eachcrule gets its own class, whose instances getfields (for adding
model objects) based on the named terms appearing on the right-hand side of the rule.
arules do not get a class; instead, their fields are folded into their containing rules. This is
an important feature, as many “off-the-shelf” grammars result in deep grammar trees; one can
achieve a shallower class hierarchy merely by judiciously usingarule declarations instead
of crule declarations.

4

Task CPU time (seconds)
Grammar specification analysis (C++ grammar) 1.64
Class hierarchy generation (C++ grammar) 0.17
Model building (C++ declaration) 0.00
Pretty printing (C++ declaration, 10 times) 0.16

Table 1:qretty performance measurements. Times listed are the average of 10 rounds, run on a PC
with a 2.80 GHz Pentium 4 processor and 1 GB of memory. The measured program analyzed 210
grammar rules, generated 134 Ruby classes based on the rules, built a model of a short C++ class
declaration (2 superclasses, two members), and printed thedeclaration 10 times. The analysis time
does not include parsing performed by the Ruby runtime at program startup.

qretty has a weakness in that it does not scale well to handle large grammars. For one
thing, given a complex grammar it can be difficult to create a corresponding class hierarchy
that—despite the complexity—provides a usable model building API. Also,qretty is slow in
analyzing large grammars, as we noticed trying to use a fairly complete C++ grammar. For
related performance figures, look at Table 1.

3.2 Building a Model

Immediately after a class hierarchy has been generated, instances of the classes can be used
to form tree structures constituting models for pretty printing. qretty-generated classes have
accessor methods for getting and setting child nodes, as onewould expect.

Also, as described in Section 3.1,qretty knows the concept of a field, and each field has what
we call abuilder settermethod, intended to make model building convenient. Depending
on the receiving field, a builder setter decides whether to create a new node object. If so, it
determines the type of object to create, passes its arguments to the constructor of the object,
and then assigns the resulting object to the appropriate instance variable. If not, it simply
uses its argument as the value to assign. The method returns the assigned object, and, if a
Ruby block is passed, also passes the object to the block.

Below we give an example of model building, emulating the Builder example of Section 2.
In addition to the model building code, both the used grammarspecification and the pro-
duced output are shown. Two alternative syntaxes for defining aperson are included to
demonstrate how the use of Ruby blocks makes the tree structure of the model clearer.

Listing 5: Grammar specification.
crule(:xml_markup, opt(seplist(:person, nl)))
crule(:person, choice(seq("<person>", nl, indent(one_or_more(
seq(choice(:name, :phone), nl))), "</person>"), "<person/>"))

mfield [:name, :phone], :pname => :@list
crule(:name, seq("<name>", ident(:name), "</name>"))

5

cfield :name
crule(:phone, seq("<phone>", ident(:phone), "</phone>"))
cfield :phone

Listing 6: Model building code and a pretty printing request.
model = ast::XmlMarkup.new
model.person { |b| b.name "Jim"; b.phone "555-1234" }
b = model.person; b.name "Tim"; b.phone "555-4321"
CodePrinter::pp(model)

Listing 7: The pretty printed output.
<person>
<name>Jim</name>
<phone>555-1234</phone>

</person>
<person>
<name>Tim</name>
<phone>555-4321</phone>

</person>

An obvious problem withqretty is that the produced model building API has no visible
interface definition, forcing programmers to deduce it fromthe grammar specification.qretty
uses runtime reflection for code generation, and there presently is no option to generate API
documentation either.

At no point during or after model building doesqretty validate tree structure [12], nor is there
static typing support in Ruby that could be used to prevent builder code from mistakenly
placing a node into a context where the grammar does not allowit. We do not perceive this
as a big problem, since the preferred way for building modelsis via builder setters, which
automatically create nodes of the correct type.

3.3 Pretty Printing a Model

qretty provides an API via which a model subtree may be pretty printed. Parameters can be
passed to choose an output stream, or to specify maximum linewidth, for instance. The im-
plementation makes use of aprinter methodnamedqretty_print thatqretty includes in
all the classes it generates. When invoked, a generated printer method matches the receiver’s
instance data to the corresponding grammar rule to determine what to print.

During printing, an object we call aprinter visitor essentially walks the model depth-first,
passing itself to the printer method of each node; the printer methods are expected to print
themselves using the API provided by the visitor. For purposes of flexibility, qretty allows
a hand-coded class to be included in a model class hierarchy,as long as it implements pretty
printing in a compatible manner; in this case the right-handside of the corresponding gram-
mar rule need not be given in the grammar specification.

6

There is no support for having generated printer methods pass or make use of any context
information, which makes it somewhat inconvenient to deal with language constructs that
print differently depending on context. Should context information be required, one can
attempt to encode it in the grammar, or implement select printer methods manually.

4 Related Solutions

There are many tools [1, 7] capable of generating APIs for operating on grammatically struc-
tured data, but we do not know of any tool apart fromqretty designed to generate classes for
the specific purpose of pretty printing. With such specialization, semantics not relevant in
the context of pretty printing may be omitted, leading to shorter model building code. One
just requires enough object semantics for correct coercionto strings for printing, and enough
structural information to enable formatting.

Some grammar-based tools [10, 11] restrict themselves to so-calledstructured context-free
grammars[11], which can—in generating classes—be mapped to a class inheritance hier-
archy such that the presence of certain kind of non-terminals is implicit in the inheritance
relationships, without concrete nodes for those non-terminals needing to appear in ASTs.
For similar shallowing of models, aqretty user must enhance the grammar with sufficient
annotations.qretty accepts all context-free grammars—the classes it generates do not inherit
from each other, nor do they have a statically typed interface; they only form a hierarchy
through builder setters’ knowledge of what classes should be instantiated for which field.

GPP [8, 9] is one of the most powerful and generally applicable pretty-printing solutions
around, but it does not generate a language-specific API for programmatic building of models.
The GPP toolset can handle a parse tree, an AST, or—indirectly—source-code text as input,
but if one has none of these, a solution similar toqretty might be helpful for building suitable
input. GPP is part of the Stratego/XT [14] program transformation toolkit. There are a
number of others, such as DMS [2] and CodeWorker [4], and while these all are capable
of pretty printing, they are rather large systems, and mightbe overkill to use just for that
purpose.qretty is not a reengineering tool, but it integrates easily withinRuby applications
that need to generatenewcode.

CodeDOM [5] provides a fixed API for building models of programs translatable to any of
multiple supported languages;qretty does not support multiple target languages for a single
model. While CodeDOM has better multi-language rendering support, its weaknesses are
that it does not provide elements to represent all language features of all target languages,
and that CodeDOM model building code gets quite verbose.qretty avoids these problems by
generating target language specific APIs designed for convenient model building.

7

5 Conclusion

In this paper, we have explored the idea of programmaticallyconstructing models just for
pretty printing. We listed a number of situations where applying CPP might be warranted,
but any benefits must naturally be weighed against implementation effort.qretty is a tool that
can help reduce the effort required, as it is capable of producing grammar-specific class hi-
erarchies and associated pretty-printing routines. Unlike most grammar-dependent software,
it even supports languages defined at runtime; a new grammar specification can be created
and processed at any time, and the resulting classes can be put into an anonymous module to
allow unneeded definitions to be discarded.

Aside from implementation effort, one must also consider whether it is possible to achieve
convenient model building in a given case. Either the model building language or the printed
language might make it hard to do so.qretty models are built in Ruby, whose syntax seemed
quite acceptable for the task, but we would have liked a language feature similar to the
JavaScriptwith statement for specifying the default receiver for a set of method calls.

For a friendly model building API, one probably requires memorable naming and a class
hierarchy of reasonable depth.qretty’s grammar specification language can assist in making
class hierarchies shallower than grammar trees. Naming comes fairly naturally for some
languages; in our XML example, method names directly map to element names in the XML
document schema. There is no immediately obvious way to map C++ language constructs to
method names, however, as we found in trying to define a C++ program model building API.

qretty is available for download [13], along with another library calledcodeprint. The
latter provides functionality for printing and formattingtext, offering control over indentation
and line breaking, for instance, andqretty depends on it for low-level formatting tasks. The
reader should note that the present bad performance ofqretty excludes its use from many
applications. It would be possible to drastically improve performance, at least by switching
to compile-time code generation, but this is left for futurework.

Acknowledgements

We thank Ken Rimey and the anonymous referees for constructive criticism on earlier revi-
sions of this paper, and Pekka Kanerva for feedback on theqretty documentation. We grate-
fully acknowledge that this work has been funded under E!2023 ITEA S4ALL (Services for
All).

8

References

[1] ANTLR. http://www.antlr.org/.

[2] I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program transformations for practical scalable
software evolution. InProceedings of the International Conference on Software Engineering.
IEEE Press, 2004.

[3] Builder for Markup.http://builder.rubyforge.org/.

[4] CodeWorker.http://codeworker.free.fr/.

[5] .NET framework developer’s guide: Generating and compiling source code dynamically in mul-
tiple languages.http://msdn.microsoft.com/.

[6] Jack Herrington.Code Generation in Action. Manning, 2003.

[7] H. A. de Jong and P. A. Olivier. Generation of abstract programming interfaces from syntax
definitions. Journal of Logic and Algebraic Programming (JLAP), 59:35–61, April-May 2004.
Issues 1–2.

[8] Merijn de Jonge. A pretty-printer for every occasion. InProceedings of the 2nd International
Symposium on Constructing Software Engineering Tools, Wollongong, Australia, 2000.

[9] Merijn de Jonge. Pretty-printing for software reengineering. InProceedings of International
Conference on Software Maintenance (ICSM 2002), pages 550–559. IEEE Computer Society
Press, October 2002.

[10] maketea theory.http://www.phpcompiler.org/doc/maketeatheory.html.

[11] The metaprogramming system – reference manual. Technical Report MIA 91-14, Mjølner In-
formatics, February 2002.

[12] Terence Parr. Translators should use tree grammars.http://www.antlr.org/article/
1100569809276/use.tree.grammars.tml, November 2004.

[13] qretty.http://pdis.hiit.fi/s4all/download/qretty/.

[14] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems
in StrategoXT-0.9. InDomain-Specific Program Generation, volume 3016 ofLecture Notes in
Computer Science, pages 216–238. Springer-Verlag, June 2004.

9

