Runtime Code Generation

Markus Malmqvist Tero Hasu
mmalmqvi@cc.hut.fi thasu@niksula.hut.f1i

May 6, 1996

Abstract

Runtime code generation (RTCG) means dynamically adding code to
the instruction stream of an executing program. It has been in use for
a long time and is a broad subject. In this paper we survey some basic
techniques and show how they have been applied in practise.

1 Introduction

Runtime code generation (RTCG) has been in use since the earliest programm-
able-store computers (in the 1940s). In those days, memory was tight and clever
ad-hoc self-modifying code sequences were often smaller and thus faster. Large
programs were run by overlaying memory.

Changing hardware and software technologies made the use of RTCG less
profitable and thus reduced the demand for it. Memories grew, reducing the I/0
component of memory access times, which made it possible to statically generate
many specialized alternatives of a general procedure. Portability became a major
issue and was achieved using high-level languages, most of which lacked ways of
expressing the dynamic generation of new code. It was gradually forgotten that
A’s data is B’s code, and that nothing fundamentally prevented A and B from
being the same.

Recently, however, on-going changes in hardware technology, software tech-
nology and workloads have brought about circumstances which make the use of
runtime code generation more profitable.

In Section 2 we describe some of the essential terms of this area, and in
Section 3 we speculate on the usefulness of RTCG. In Section 4 we cover some
of the related theory. In Section 5 we present some cases in which RTCG has
actually been used. Section 6 concludes.

2 Terminology

Runtime code generation is a general name for structured techniques that change
a program’s instruction space while the program is running. There is a variety
of other common, overlapping names.

Dynamic Compilation is a little narrower a term than runtime code genera-
tion, as it is typically seen to encompass only generation of code that does
not modify itself.

Dynamic Linking adds code to the instruction space of the program. The code
is typically generated using a code generator that is outside of the program.
The linked code may have been generated on demand for the application.

Runtime Compilation is a term which is often used to describe loop paral-
lelization that is done at runtime and which performs no code generation.
Certain loop-carried data dependencies cannot be discovered by a static
compiler, and runtime compilation may be beneficial in these cases.

Instruction-Space Modification is a general term, and is used to describe
changing bits in an instruction space, regardless of whether the change
comes from inside the application or from outside.

Self-Modifying Code is a term whose meaning is hard to pin down, as there
are many ways to interpret the word "self". There may be an instruction
which modifies:

o itself
e an instruction in the same basic block
e an instruction in the same (source code) module
e an instruction in the same address space
e an instruction in the same protection domain
If "self" is interpreted to mean the instruction space, just adding instruc-

tions to the instruction space without reusing any region of memory could
also be considered as self-modification.

Deferred Compilation is a lightweight approach to run-time code generation,
in which compile-time specialization is employed to reduce the cost of op-
timizing and generating code at run time [14].

3 Pros and Cons of RTCG

3.1 Reasons to Use RTCG

Times are changing so that RT'CG is becoming more useful. RTCG is an increas-
ingly interesting option, because new significant static optimizations are hard to
find. In recent years CPU speed has increased quickly while memory access speed
has improved only little. This diminishes relative RTCG penalty. Due to grow-
ing cache miss penalties, code size is again becoming an important issue. RTCG
can adapt to the cache size of the target architecture for example when unrolling
loops. RTCG often reduces the size of the code. This can make a code fragment
small enough to fit in the cache. Datasets processed by computers become larger
and larger. This increases the probability that the cost of runtime compilation is
less than the gain acquired from repeated use of optimized code.

3.2 Why RTCG Can Produce More Efficient Code

Optimizing with RTCG can be fruitful, because all information concerning the
operation of a program can be used. Only part of this information is available for
traditional static optimizers. With RTCG it is therefore possible to create code
that beats any statically created code [10].

There are ways to gain similar speedups with static compilation. Code can
be made fully cased, which means that there is a specialized code fragment for
every possible input. Due to excessive space demands this is rarely sensible and
often impossible. Another method is common casing. Statistic analysis is used
to spot the most common input values, for which specialized code is written.
However, reliable identification of common cases can be a tough problem. On
the other hand, RTCG can produce specialized code for an input when needed.
This costs the time spent dynamically compiling the code, which is in many cases
acceptable.

Typical optimizations used with RTCG could be loop unrolling, dead code
elimination, constant folding and constant inlining. At runtime, cache size can
be used when deciding whether to unroll a loop or not. Some dead code can be
found only at runtime. Runtime constants can be used in constant folding and
they can be inlined to instruction immediates. Thus all these optimizations can
be done better at runtime.

Specialized code acquired with RTCG has also typically less decisions and
therefore also less branches than the statically optimized code, so instruction
prefetch can work more efficiently.

3.3 Problems in Using RTCG

Machine independence is hard to reach, and debugging dynamically changing
code can be cumbersome. The performance gain can vary greatly even on similar
architectures. Cache architectures differ, so visibility of changes in instruction
space vary between hardware implementations. It is also important to know
when to stop while partially evaluating a program (see Section 4.1). Otherwise
the program might be evaluated fully and nothing is gained. Partial evaluation
should consume some well chosen input and produce better code with little work.
Maybe the most pressing issue is the lack of guidelines which could be used to
deduce whether it is profitable to use RI'CG in a certain case or not. Therefore
the most difficult, at least partly open issues are both machine-dependent and
machine-independent profitability analysis, automatic discovery of places there
RTCG could be used for optimization and manual direction of RTCG in languages
by programmers. The last one is of course a less tempting alternative to automatic
discovery.

Automatic RTCG may under- or overspecialize code [13]. On the other hand,
it is not pleasant for the programmer to manually decide in which parts of the pro-
gram to apply RTCG. Programmer-directed RTCG is typically also less general.
Better implementations of automatic discovery of promising targets for RTCG
would therefore be the best solution.

3.4 Some Solutions to Problems

Machine-independence could be achieved by using a generic compiler and dy-
namic linking, but the startup cost would be excessive. There are competitive
retargetable code generators that can efficiently produce code of good quality
from intermediate representation. The intermediate representation or IR is pro-
duced by an application-specific compiler that can be either written by hand
or generated automatically via partial evaluation (see Section 4.1). This way
machine independence is guaranteed. Differences in cache architectures can be
hidden behind the compiler interface and debugging can be managed by mak-
ing RTCG well-structured enough that the debugger can change representation
dynamically.

3.5 A Cost Model for RTCG

One way to model time cost of RTCG is to use a simple linear model. It could
be something like: cost = startup +m x N [9]. Startup means the time spent for
dynamic compilation, m is time used when running the optimized code fragment
once, and N tells how many times the code fragment is ran. Statical cost could

be: cost = ms x N, where ms is time needed for one invocation of statically
compiled code fragment. Of course the cost of RTCG should be lower than the
cost achieved by statical means. Because statically compiled code has no startup
cost, but ms is bigger than m, RTCG will become more profitable as N becomes
larger. The value of N at which the costs are same, is called the breakeven point.

While optimization level increases, startup cost and breakeven point are in-
creased but m is decreased. This implies that for large datasets it is worthwhile
to use complex optimizations. Of course, if an optimization takes a long time
and still provides only modest speedup, an enormous data set is needed before
this kind of optimization is sensible.

3.6 An Example

Bitblt is a routine that has been optimized with RTCG by many. It is a graph-
ical bit-transfer operation which merges a source rectangle with a destination
rectangle, using some logic operation such as and, or, xor. It is general, handling
different alignments, sizes and overlapping rectangles.

The outer loop executes once per horizontal line in source rectangle. The
inner loop reads the source one machine word at a time. Due to generality, the
inner loop is complicated and depends on numerous parameters. Many of them
change rarely. Fully-cased bitblt can be extremely long, even 1MB. Common-
casing is hard to implement, because change in one parameter can affect many
optimizations.

With RTCG, a custom inner loop is generated on demand, one for every call
to bitblt. Some optimizations, that are not possible statically, can be made
also. Included below is a prototypical bitblt inner loop [9]. Op is constant over
entire call while 1s and rs are constants over the inner loop.

j = dst.left;
mask = lmask;
a = src[src.left];
for (i = src.left+l; i < src.right; i++) {
b = srclil;
m=(a«1s) | (b >» rs);
switch (op) {
case AND:
dst[jl=dst[j]1~(("m&dst[j])&mask) ;
break;
case NOT:
dst[jl=dst[j] “mask;
break;

case OR:
dst[jl=dst[j]| (m&mask) ;
break;
. 13 more cases ...
}
=ity
. end-of-line tests

4 Techniques in Using RTCG

4.1 Partial Evaluation

Partial evaluation means evaluation of a program with respect to some part of
the program’s input. As the result, a residual program is obtained. This residual
program executes the computations which depend on the input not used in partial
evaluation. The partial evaluator is traditionally often called mix. The equation
[pl (d1, d2) = [[mix] (p, d1)] d2 [13] means that the result of evaluation of
program p with arguments d1 and d2 must be the same as the result obtained from
first applying partial evaluation to argument d1 and then giving the argument
d2 to the residual program.

The most interesting aspect is that mix can be applied to itself. The result
is a program that will generate the residual program when ran. Upon further
self-application a stand-alone code generator is obtained. This could be used to
optimize any program in respect to any input. However, RTCG is often quite
specialized and might therefore not directly rely on theory of partial evaluation.
Pure partial evaluation can also be quite slow. Therefore code generators are
usually made by hand. This hand-written code generator can then be used to
specialize itself to a certain procedure to obtain a special runtime code generator
for the procedure.

4.2 Runtime Compilers

Because runtime compilers are application-specific, they can be much faster than
generic compilers. It may well be that entire compilation phases can be left out
while other phases are optimized for the application. As a result, startup cost
decreases. It is important that only those optimizations are executed, which
pay back the time spent. Speedups gained with RTCG are data-dependent, but
variations are typically small in practise.

While machine-independence is usually strongly recommended, sometimes it

may be suitable to specialize RTCG not only for a certain application but also for
a certain machine for maximum speed. In these cases, a template compiler can be
used. Templates are machine code sequences with holes. The template compiler
fills these holes with runtime values and concatenates templates accordingly. This
results to very fast one-pass compilation that can often rival even optimized,
hand-crafted assembly. However, the use of template compilers is a very laborious
process. Detailed optimizations must be done by hand. In the past, RTCG has
mostly been used this way.

A more recommendable way is to use a compiler which produces code in
machine-independent intermediate representation (IR). An IR compiler is still
application-specific. A retargetable code generator can be used to transform
the IR into native machine language of the target machine. Intermediate rep-
resentation can be easily optimized automatically. Also, the programmer is free
from writing machine code. Templates can be used to speed up IR compila-
tion, because the code produced has a very similar structure in every invocation.
Sometimes even code produced via machine-independent RTCG can be better
than hand-crafted assembly.

Of course, an IR compiler is slower than a template compiler due to its more
generic nature. A template compiler can make at compile time some optimiza-
tions which an IR compiler must make at runtime. An IR compiler can ma-
nipulate larger blocks than a template compiler while optimizing, but this can
produce only a minor speedup. The retargetable code generator can be quite sim-
ple, because most useful optimizations are made in IR compiler after promoting
the runtime constants to immediates.

Machine-dependent RTCG doesn’t necessarily use templates. This can make
RTCG more general. RTCG can generate machine code that will in turn produce
optimized code at runtime. RTCG made this way can also be faster, because
emitting instructions is faster than handling templates. However, one pass code
generation can be hard to do well.

4.3 Code Analysis

One analysis method is to divide the computation made by a program into
stages [13]. Values computed in earlier stages change more slowly than those
computed in later stages. Stages are analyzed to determine which of them should
be optimized. If a subexpression contains only values that belong to the current
stage or an earlier stage, the result will belong to the current stage. In prac-
tise, this process must be approximated due to recursion. This makes RTCG
less optimized and therefore making the analysis more accurate is a task of high
priority.

While early computations are compiled normally, the instructions concerning

7

the late computations, which depend only on values defined in a earlier stage,
are emitted at runtime. Only emitted instructions will belong to final runtime-
optimized program. There can be many little code generators in the code that
generates runtime-optimized code, each producing code for a small part of the
source program. Actually, if more than two stages are recognized, the little
code generators will produce other code generators and so on. This is desirable,
because programs usually contain many stages. With cataloguing the little code
generators, generation of duplicate code can be avoided.

In general, when optimizing RTCG it is crucial to investigate which optimiza-
tions will probably work so much more efficiently at runtime that they will pay
back the time invested.

5 Existing Systems

We have selected some existing applications for presentation in this chapter, and
attempt to describe them in some detail.

5.1 dcg

dcg [6] is a system that allows clients to specify dynamically generated code
in a machine-independent manner. Code generation costs approximately 350
instructions per generated instruction.

dcg client programs are, in essence, small compiler front-ends, because they
specify dynamically generated code using the machine-independent intermediate
representation (IR) of the 1cc compiler [7]. The IR, while smaller and simpler
than gcc’s, for example, specifies a rich enough set of operators that all C lan-
guage constructs can be expressed.

dcg consists of a small library of interface routines which simplify the creation
of an 1cc IR. Once the client has, using these routines, created an IR specification
for a single procedure (which is the unit of code generation for dcg), the spec-
ification can be passed on to dcg for compilation. dcg compiles the procedure
and returns a pointer to the executable code. The client invokes that code as an
indirect call to a C procedure.

dcg does binary code selection using burg [8], which uses Bottom-Up Rewrite
System (BURS) technology to optimally translate an IR tree into machine instruc-
tions [17].

Retargeting dcg for a new target machine is done in three parts. First, a
mapping from IR patterns to machine instructions is created. Second, machine
instructions are mapped to binary templates. Third, auxiliary code for observing

calling conventions, data layout restrictions, register allocation, etc. is defined.
Small languages for expressing the mappings are provided.

For more information about the library routines, etc., see [6]. Figures 1 and
2, also taken from [6], show a piece of code that builds a function using dcg, and
the code generated by dcg, respectively.

typedef int (*FPtr) (int);

FPtr example() {
Symbol argl[2]; /* argument vec sent to gen */
int ncalls = 0; /* number of calls made by plusl */

arg[0] = sargi(); /* allocate symbol for ’x’ */
/* associate with a virtual register (if possible) x/

dcg_param_alloc(arg, ncalls);

/* create and register IR tree for "return x + 1;" with dcg */
regtree(reti(addi(indiri(addrfp(argl0])), cnsti(scnsti(1)))));

/* generate code on heap */
return (FPtr)dcg_gen(sfunc("plusi"), arg, ncalls);

Figure 1: Routine to build function “int plusi(int z) { return z + 1; }” dynamically

addiu $sp, -152 # allocate AR

add $25, $4, 1 # ADDI ($4 holds argument 1)
move $2, $25 # RETI ($2 holds return value)
addiu $sp, 152

j $31

Figure 2: The R3000 code emitted to compute “return r + 1;”

5.2 ‘C

From the work with dcg grew out ‘C (Tick C) [5], a superset of ANSI C, which
offers several improvements over dcg. Perhaps the most significant improvement
is the interface for code specification, which is high-level instead of being based
on an intermediate representation of a compiler. ‘C, like dcg, allows machine-
independent specification of dynamically generated code.

In ‘C dynamic code is specified at runtime, and these specifications can then
either be composed to build larger specifications, or instantiated to produce exe-
cutable code. To provide support for specifying dynamic code, ‘C adds two type
constructors and three unary operators to ANSI C. The two new type construc-
tors, cspec and vspec, are both postfix-declared types (similar to pointers). The
three new unary operators, ’, @, and $, have the same precedence as the standard
unary prefix operators.

The * operator specifies that its operand (an expression or a compound state-
ment) is to be dynamically generated. Nested backquote expressions are forbid-
den, so it is not possible to specify dynamic code which specifies dynamic code.
The use of some of the C constructs, such as break, continue, case, or goto,
is restricted. In particular, the mentioned statements cannot be used to transfer
control outside the containing backquote expression.

The type of a dynamic code specification is cspec (code specification). The
evaluation type of the code specification is the type of the dynamic value of the
code. For example, the type of the expression ’4 is int cspec. Applying ’ to a
compound statement yields a result of type void cspec. The statical typing of
dynamic code specifications allows the compiler to type-check code composition
statically.

Variables with a vspec (variable specification) type are dynamically gener-
ated lvalues. vspecs allow the construction of functions that take a runtime-
determined number of arguments.

The @ operator allows dynamic code specifications to be combined into larger
specifications. Its legal operands are cspecs and vspecs, and it must be applied
inside a backquote expression.

The $ operator causes its operand to be evaluated at specification time. It
may only be applied to an expression within dynamic code, and the expression
must not have cspec or vspec type. The resulting value is incorporated as a
runtime constant into the containing cspec.

The functions provided by the ‘C standard library include:

compile Compiles cspecs.
param Creates a parameter for the function under construction.

local Used to reserve space in a function’s activation record.

Here is an example, a piece of ‘C code which compiles and calls a function
that prints "Hello world".

void cspec hello = ’{ printf("Hello"); };

10

void cspec world = ’{ printf(" world"); };

/* Concatenate the two statements. */
void cspec helloworld = ’{ @hello; @world; };

/* Compile and call the result. The TC_V indicates that the return
type is void. */
compile (helloworld, TC_V)();

‘C also supports partial evaluation. This doesn’t actually change the power
of the language, but it may be useful. Because code generation of all templates
happens at compile time, partial signatures are used to indicate which arguments
can be specialized in a function; this is done to avoid code explosion. A partial
signature is a function prototype prefixed with the partial keyword. Type
specifier bound is used to indicate bound arguments. Partial evaluation of a
function is performed using the unary prefix operator eval. Keyword unbound is
used in place of arguments which are not being provided during partial evaluation.

While the ‘C compiler prototype was based on dcg, a more recent implemen-
tation, called tcc, exists [16]. It uses templates and is based on VCODE, which is
a dynamic code generation system [4]. In that implementation, backquoted code
is compiled into C code that invokes VCODE macros to emit code directly, without
processing any intermediate representation at run time.

5.3 Fabius

Like the ‘C compiler mentioned earlier, Fabius also is a compiler which can be
used to produce code which will generate code at run time [11|. The major differ-
ence between the two compilers is that Fabius automatically compiles ordinary
programs, written in a subset of ML, into code that does RTCG. It discovers and
exploits opportunities for dynamic optimization by itself.

One of the most important goals in developing Fabius has been the reduction
of the run-time cost of code generation to minimum. The approach to compilation
that Fabius uses is called deferred compilation. Fabius optimizes the code that
dynamically generates code by using partial evaluation techniques, completely
eliminating the need to manipulate any intermediate representation of code at
run time. The creators of Fabius report that the average cost of RTCG is as
low as about six instructions executed per generated instruction. The partial
evaluation techniques and heuristics used include memoization of specialization,
unfolding of state conditionals, and the residualization of static values in dynamic
contexts.

When Fabius begins compilation, it must first identify the "early" compu-

11

tations that can be performed by the statically generated code and the "late"
computations that must appear in the dynamically generated code; this isn’t
easy. When a chosen function is applied to an early argument, a code generator
is invoked to create a specialized function that is parameterized by the remaining
"late" arguments. The function is first annotated with early and late annota-
tions. It is then compiled into a register-transfer language, which also contains
the annotations. The result, in turn, is translated into annotated MIPS assembly
code. Now, the annotations indicate whether the instructions should simply be
executed (early), or emitted into a dynamic code segment (late).

Fabius adds initialization code to the compiled program to allocate a dynamic
code segment; one register, called the code pointer, is dedicated to keeping track
of the position where the next instruction to be emitted is placed.

Fabius uses run-time instruction selection, an optimization that may in some
cases be very beneficial. For more information about Fabius, see [11].

54 C

A similar approach for run-time specialization has also been applied to the C
programming language [3]. Because of unrestricted aliasing and mutable data
structures, C is perhaps not as well suited for this approach as ML. Program
analyses have to be overly conservative, and opportunities for optimization are
thus limited. ‘C, for example, doesn’t have such a problem, because of the pro-
grammer’s responsibility to specify manually where and how to do specialization.

A C language implementation has been done, using gcc, and is integrated in
a partial evaluation system that specializes programs at compile time as well as
run time. At compile time the system produces templates and transforms them
so that they can be processed by a standard compiler. At run time only minor
operations, such as selecting and copying templates, need to be performed. This
leads to good performance.

5.5 SPIN
5.5.1 Introduction

General operating systems often work very poorly with certain types of appli-
cations, because they must be capable to run all applications. Usually, they
are not modular enough to allow comfortable specialization and extension. If
they are, performance might be seriously compromised when using extensions.
Specialization might also hurt other applications.

Protected cross-domain communication is very expensive on many systems.

12

This can be overcome by allowing dynamic linking of code into the kernel. If
protection is not addressed properly, runtime core extension can be very risky,
because it affects all applications. Therefore extensions should be made applica-
tion specific.

SPIN offers extensibility with both safety and good performance [1]. Exten-
sions are dynamically linked into the kernel’s address space, which allows fast
communication between kernel and extensions. The linker is also in the core.
Extensions can be loaded at any time. Extensions and kernel code is written
with Modula-3 which guarantees module isolation and therefore security.

5.5.2 Implementation

An extension provides a collection of handlers and maps them to events. Both
events and handlers are procedures, event procedures are exported from some
interface and handler procedures of an event procedure are those which have the
same type as the event procedure. The right to raise an event is equivalent to
the right to call the event procedure which in turn is equivalent to the right to
reference the type name of the event procedure. Event procedure contains default
handler for the event. If there are no other handlers for the event, event raising
is equivalent to calling the event procedure. Otherwise the event is captured by
the dispatcher which dynamically optimizes the calling of handlers.

SPIN provides a set of fine-grained services for memory and processor resources
management. These are used by the incore extensions. Because the extensions
can use core services efficiently, very low-level services can be provided without
hurting performance. In fact, there is no reason to create higher level abstractions
via concatenation of low-level services, they can be conveniently constructed by
simply calling the low-level services.

5.6 Shade
5.6.1 Introduction

A tracing tool should be independent from language and compiler. It should
be able to trace also those applications that employ signals, exceptions and
dynamically-linked libraries. Tool should be so fast that realistic workloads can
be studied. It should also be extensible so that it can be used to collect any

retrievable information. Simulation of non-existent machines should also be pos-
sible.

Of course, these are partly conflicting features. For example added flexibility
typically hurts performance. Shade uses several methods to overcome this fact [2].
Traced executeable code is dynamically cross-compiled into executeable code for

13

the host machine. Compiled code is cached to make dynamic compilation to pay
off. Simulation and tracing is integrated so that trace information can be saved
directly during simulations. Shade can adapt to different tracing requirements
collecting only the requested information. This enhances performance. A client
can supply special purpose code to enable collection of data not supported directly
by Shade.

5.6.2 Implementation

A small main loop maps each simulated target instruction to a corresponding
fragment of host code, called a translation. Each target instruction is dynam-
ically cross-compiled into a translation which will simulate the instruction and
save any requested trace information. Target applications memory and regis-
ter references are mapped to host memory and registers. One translation often
simulates several target instructions. Some special instructions such as branch
and traps force Shade to move to next translation. Compiled translations are
cached and translations can be chained so that returning to main loop between
translations is not usually necessary.

6 Conclusion

It seems likely that the advances in hardware and software will continue the
trends outlined in this article. This will strengthen RTCG as an option for more
public use. It will be a long time before RTCG is commonly used, however.

The Web is highly distributed and therefore methods to cross-compile mach-
ine-independent source code are needed. RTCG could be used to avoid unnec-
essary code generation via dividing monolithic applications. When compiling
source code to machine-independent code, staging analysis or similar methods
could be used to prepare the application for the use of RTCG. This way only
part of the code must be compiled into native code before starting the applica-
tion. The rest of the code could be compiled on demand at runtime. This would
enhance response time.

7 Acknowledgements

[9] proved most helpful when constructing this paper, thanks to its authors.

14

References

[1]

2]

3]

4]

[5]

6]

7]

8]

[9]

[10]

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Backer, C. Chambers, and S. Eggers Extensibility, safety and perfor-
mance in the SPIN operating system. University of Washington, Department
of Computer Science and Engineering, 1995.

B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for exe-
cution profiling. 1994.

C. Consel and F. Noel. A general approach to run-time specialization and
its application to C. In POPL ’96 Symposium on Principles of Programming
Languages, pp. 145-156, January 1996.

D. R. Engler. VCODE: a very fast, retargetable, and extensible dynamic code
generation substrate. Technical Memorandum MIT/LCS/TM534, MIT, July
1995.

D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A language for high-
level, efficient, and machine-independent dynamic code generation. In Con-
ference Record of POPL °96: The 23rd ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages, pp. 131-144, January 1996.

D. R. Engler and T. A. Proebsting. DCG: An efficient, retargetable dynamic
code generation system. Sixzth International Conference on Architecture Sup-
port for Programming Languages and Operating Systems, pp. 263-272, Oc-
tober 1994.

C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C.
Software - Practice and Ezrperience, 21:9, pp. 963-988, September 1991.

C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG - fast optimal
instruction selection and tree parsing. SIGPLAN Notices, 27:4, pp. 68-76,
April 1991.

D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime code generation.
Technical Report UWCSE 91-11-04, University of Washington, Department
of Computer Science and Engineering, November 1991.

D. Keppel, S. J. Eggers, and R. R. Henry. Evaluating runtime-compiled
value-specific optimizations. Technical Report UWCSE 93-11-02, University
of Washington, Department of Computer Science and Engineering, Novem-
ber 1993.

15

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Lee and M. Leone. Optimizing ML with run-time code generation. In Pro-
ceedings of the ACM SIGPLAN 96 Conference on Programming Language
Design and Implementation, May 1996. To appear. A preliminary version is
available as Technical Report CMU-CS-95-205, School of Computer Science,
Carnegie Mellon University, December 1995.

M. Leone and P. Lee. A declarative approach to run-time code generation.
School of Computer Science, Carnegie Mellon University.

M. Leone and P. Lee. Deferred compilation: The automation of run-time
code generation. Technical Report CMU-CS-93-225, School of Computer Sci-
ence, Carnegie Mellon University, December 1993.

M. Leone and P. Lee. Lightweight run-time code generation. In PEPM 9/
Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion, Technical Report 94/9, Department of Computer Science, University
of Melbourne, pp. 97-106, June 1994.

D. Pardo. Runtime Code Generation (RTCG).
http://www.cs.washington.edu/homes/pardo/rtcg.d/index.html.

M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A template-based com-
piler for ‘C. In proceedings of the First Workshop on Compiler Support for
System Software, February 1996.

T. A. Proebsting. Simple and efficient BURS table generation. In Proveed-
ings of the SIGPLAN 92 Conference on Programming Language Design and
Implementation, June 1992.

16

