Programming Language Technology
for Niche Platforms

Tero Hasu

Thesis for the degree of philosophiae doctor (PhD)
at the University of Bergen

2017

Date of defence: 3 March 2017

University of Bergen, Norway.

Paper in chapter [reprinted by permission from Springer. All rights reserved.

Other papers © their respective authors.

Smartphone pictures are in the public domain, with the originals marked as “Public Domain,” or—in the
Nokia 7600 and E71 case—with a/Creative Commons CC0 1.0 Universal Public Domain Dedication!

All other content © 2016 Tero Hasu.

https://creativecommons.org/publicdomain/zero/1.0/deed.en

To my parents

Preface

Moulding and composing the pieces of this book has been quite a venture,
with plenty of challenges, joys, and lessons along the way. I suspect the ideas
here will come to influence my personal software development practices going
forward. Despite the niche appeal of the subject matter, it's my hope that I'm
not the only one to find some inspiration from within these pages.

Bergen, 6 October 2016

Acknowledgements

I'm grateful to my supervisors Magne Haveraaen and Anya Helene Bagge for
the opportunity to come to Bergen in the first place, and for the supervision,
of course. Magne’s ideas on domain engineering in particular have influenced
me; I was quite unfamiliar with the discipline back when I arrived. Anya’s
papers had struck a chord with me long before that, and were the reason why
I knew of BLDL at all. Anya also provided me with the ITgX sources of her
dissertation to use as a template, and that has influenced the organization of
this text.

The Research Council of Norway granted me a scholarship through the De-
sign of a Mouldable Programming Language (DMPL) project. Such a “license”
to do full-time PL research was of great personal significance to me.

The Department of Informatics at the University of Bergen has been a
welcoming and pleasant workplace. I've enjoyed discussing topics of the
trade with my ex-colleague Eva Burrows, my “predecessor” Valentin David,
and a more recent BLDL reinforcement Jaakko Jarvi. May-Lill Bagge has been
almost BLDL personnel as well, and a co-traveler and conspirator on many an
occasion. Ida Rosenlund, Tor Bastiansen, and other administrative personnel
at the department made it so that I didn’t need to be worried about university
bureaucracy.

It was a pleasure to hang out by the water cooler and elsewhere with Atle,
Bo, Eivind, Ina, Kristoffer, Mattia, Paolo, Puja, Samson, Sara, and the rest of
the varied Bergen crew.

Matthew Flatt graciously hosted my visit to Utah. The visit was a mem-
orable occasion in being my first experience of coworking and collaborating
with others who program in Racket, despite my discovery of the language
years before. Resident Racketeers and Schemers in Utah included Xianggqi Li,
Eric Holk, and Andy Keep.

Prior to coming to Bergen I was at the Helsinki Institute for Information
Technology HIIT, and when it comes to my career move to pursue a PhD in

v

PREFACE

programming languages, Antti Oulasvirta and Ken Rimey in particular helped
make it happen: Antti supported my seeking of an external scholarship; and
Ken helped me get started with PL research in the first place, in two of his
projects. Antti Yld-Jadski facilitated my earlier explorations of postgraduate
study possibilities at Aalto University.

Lili could be trusted to help me relax and regain some sanity whenever I'd
emerge from immersive coding and writing sessions.

vi

Scientific Environment

The research presented in this dissertation has been conducted at the Bergen
Language Design Laboratory in the Programming Theory group of the Department of
Informatics at the University of Bergen, and while visiting the PLT group at the
School of Computing at the University of Utah.

Research School in
Information and Communication Technology

UNIVERSITY OF BERGEN

Department of Informatics

Bergen
Language
Design
Laboratory

vii

Abstract

Developers writing software for a niche platform are denied the luxury of a
first-class vendor-supported integrated development environment and a large
community crafting platform-tailored libraries, tools, and documentation. I
outline a strategy for setting up a cross-platform software product line with
cost-effective targeting of niche platforms in mind.

The product line setup strategy assumes little tool support from the plat-
form vendor or third parties, instead relying on a suitably-designed, mal-
leable general-purpose programming language for the necessary support.
The required language support includes: program translation into the rele-
vant vendor-favored languages; human-comprehensible translator output to
allow for basic debugging irrespective of available tools; a component system
for managing software assets and assembling products; static reasoning of
facts about whole programs for the benefit of configuration management and
building; and modifiability of the language from within (and perhaps also
from without), to allow for purpose-oriented variability, and low-threshold
implementation of abstractions over platform and product-line specific id-
ioms.

I present a collection of technologies aimed at implementing such program-
ming languages, and show a number of ways to apply such languages in ways
that suit the niche platform application product line scenario. Iuse smartphone
operating systems as an example platform ecosystem, and focus on error han-
dling and prevention as an example concern that poses reuse, integration, and
configuration management challenges in multi-platform codebases.

ix

Contents

[Prefacel

[Abstract

(I_Introductionl
1.1 ivation L
(1.2 Domain Engineering|
[1.3" Configuration Managemenf|
[1.4 Mouldable Programming Languages|.

.5 Product-Line Development Kits|.

[1.6 Target Languages, APIs,and Systems|
[1.7 A Niche Platform Software Production Strategy]
L8 Outling

2 Adopting a Macro System|
2.1 Introduction|

22 Magnolisp|
2.3 Hosting a Transcompiled Language in Rackef|.
24 Evaluationl

.5 Motivation for Racket-Hosted Transcompilation|
2.6 RelatedWork]
27 Conclusion|.

[3_Abstract Data Representations for Abstract Syntax|
BI Introduction] - « « o

[3.2 Motivation for Abstraction-Friendly AST APIs
The lllusyn Library|

B.4 Node Interfaces and View Data Types|
.5 Algebraic Views for Pattern Matching|
B.6_ View-Directed Traversalsl. o v o v v i i i i
8./ _Macro-Based Generation of APIs|
3.8 AST Abstraction Scheme|o 0oL
B9 RelatedWorkl
10 Di 10N|
B.11 Conclusion| o

33
35
37
39
50
51
53
56

57
59
61
63
65
69
70
71
73
76
79
84

87
89

xi

CONTENTS

4.2 Permission-Based Security Models in Smartphone Operating |

| Systems|. 92
4.3 The Magnolia Programming Language|. 95

4.4 Language Support for Permissions| 96

4.5 Experience with Application Integration|. 98

4.6 Problematic Permission Requirements| 100
47 RelatedWorll o oo oo 101
48 Conclusion|. L 102
[>__Error Handling| 105
BI1 Infroduction] L. 107
b.2 Guarded Algebras|. 0 0L 109

5.3 Automatic Pervasive Error Handling|. 114
b4 FErdal. 117

o Di 1oN| 123

b6 RelatedWorld o . 127
b7 Conclusion|. o 129
[6_Mouldable-Language-Based Niche-Platform Product Lines| 131
6.1 The Magnolisp Language Family and Infrastructure| 132
6.2 A Product-Line Architecturel., 132

6.3 Managing Configurations with Konffaa| 134

6.4 A Macro-Implemented Component System| 135

6.5 Composing Programs in Magnolisp/{ 139

6.6 Cross-Component Error Handling in Magnolispgyga| - - - - . - . 143

6.7 A#lang Configurablemglc| 145

6.8 More Dynamic Portable Programming in Magnolisp,| 147

6.9 Integrating with Targets in Magnolispc, etal|. 147
6.10 Macro-Based Mapped Types|. 153
6.11 Resolving Build Dependencies| 154
6.12 Capturing Build Domain Knowledge|. 156
6.13 A Product-Line Development Environment| 158
[Z_Discussionl 159
.1 Benefits, Shortcomings, and Uncertainties| 159
............................. 162

B8_Conclusionl 167
81 Contributionsl 168

8.2 Niche Platform Strategy Summary| 169

8.3 Software APl Summary| 170
Bibliographyj 177
[Citation Index] 193
[ndex 197

xii

CHAPTER

Introduction

In this dissertation, I present a collection of technologies and describe an over-
all strategy for creating and maintaining a programming-language-centric tool
environment for the production of cross-platform software. My specific aim is
for the production tool setup to support the development of software applica-
tions built from a single codebase, but running across different smartphones.
Niche platforms should furthermore be treated no differently than more main-
stream ones, to hopefully lower the threshold of having a software product
support less popular target platforms.

By platform I mean a base on top of which a software program can run, be it
an operating system (OS), a virtual machine (VM), a cross-platform application
framework, or a hardware-embedded computing platform (such as Nvidia’s
CUDA parallel computing platform). By niche platform I mean any platform
that is not both popular among developers and backed by a large ecosystem of
software and tool vendors. A platform may be niche by design, due to having
been designed for a very specific purpose. A general-purpose platform may
remain niche for lack of mainstream appeal, perhaps due to heavy competition
or insufficient marketing. It can also happen that a platform with a large
market share is nonetheless unappealing to developers, for example due to a
poor developer experience and lack of incentives [Wood) [2014].

Like any other platforms, niche platforms have their challenges when it
comes to a developer targeting them for the first time. There are costs be borne:
some platform specifics must be learned, and probably some compatible code
needs to acquired, ported or written from scratch. For that process, compared
to a popular platform, there probably is less support to be had from peers,
and fewer existing tools and libraries to be found. Some of the relevant details
about a platform (and its tools) may be poorly documented, if at all; defects and
quirks especially may lack documentation, and they may be more common
for platforms that are less well exercised.

I do not believe there is a simple remedy for these problems, but I do be-
lieve that the problems can be contained in at least two ways. Firstly, one can
choose to develop families of similar applications (e.g., only PIM applications,
or only social networking applications); then, even if one must implement
components from scratch, separately for each platform, there is likely to be

1

1. INTRODUCTION

extensive reuse across each application family. Secondly, one can develop tool-
ing for the management of such product families in a cross-platform setting.
Such tooling should be reusable and adaptable, at least for adapting to dif-
ferent target platforms, and perhaps even to product family specific needs; as
niche platforms may come and go, adaptability seems preferable to building
in support for a fixed set of target platforms.

In the context of product families, I use a variety of terminology. A compo-
nent is a composable piece of software that implements a known interface. A
core asset (or just asset) is a component, or any other digital artifact out of which
individual products of a family might be built. A product line is a product fam-
ily whose individual members are produced systematically, by building them
out of a common pool of assets, with the help of methods and tools. A product-
line architecture (PLA) is a way of organizing assets and applying methods and
tools for maintaining product lines, and a production tool is a tool that is used
for that purpose. Domain engineering or product-line engineering (PLE) means
the creation, maintenance, and organization of reusable assets of a domain,
which might be that of a product line.

This dissertation’s technological contributions aim to facilitate the creation
of production tooling. When working on those contributions, I made some
assumptions about what kind of technology might help achieve fit-for-purpose
results; more specifically, I assumed that

A family of special-purpose-adapted programming languages built
on common platform-agnostic infrastructure and translating into
platform vendor supplied languages can serve as a basis for mech-
anizing various cross-niche-smartphone software product line en-
gineering tasks.

I arrived at that base assumption firstly through Lisp inﬂuence and the
Lisp tradition of customizing languages and integrating functionality into
them, and secondly based on the idea that if we are working with a family of
products with some variation between its members to suit different purposes
and targets, might we not also have a family of languages in which to program
them, similarly with variation to suit different purposes and targets. Having
multiple languages allows for different design tradeoffs to be made, depending
on the intended purpose.

For lack of more established terms, I use the term domain-oriented language
for a mostly-general-purpose programming language that has (or can assume)
some specialized features or characteristics to make it a better fit for its intended
domain or purpose. I use the term domain-oriented programming to refer to
programming with a collection of such languages sharing a similar “look and
feel.”

For economical implementation of such families of similar languages, it
is probably useful if domain specializations themselves can be expressed as
modular assets, perhaps in terms of composition-friendly formalisms such
as attribute grammars [Knuth| [1968] or “funcons” [Churchill et al} 2015} jvan
Binsbergen et al., 2016]. To satisfy this dissertation’s modular language defi-

Due to my use of Racket (a descendant of Scheme and Lisp) as a “language construction kit”
of choice, Lisp influences are likely to show extensively both in the solutions and the vocabulary
of this dissertation, in a way making it concern both niche platforms and niche languages at the
same time, for which I apologize.

2

1.1. Motivation

nition needs, I have opted to rely on the proven syntax definition mechanism
of hygienic macros [Clinger and Rees)| [1991; Kohlbecker et al.,{1986], designed
for safe compositio and also for extending languages from within. More
specifically, I use the Racket programming language [Flatt and PLT, 2010] and
its macro system and other machinery for defining languages as libraries.

Macro systems are suitable for various kinds of syntactic language adapta-
tion, and the immediacy of writing a macro should also encourage on-demand
language adaptation by product programmers as requirements change or new
design patterns or better abstractions are discovered. Macros are not, however,
a complete solution for engineering domain-oriented language implementa-
tions: macros transform a language into its “core” syntax, but my assumption
is that multiple different core languages may be required, and that further
translation to various different vendor languages is required.

This dissertation presents compiler front and “middle” end implemen-
tation techniques that aim to promote language infrastructure reuse in the
context of such requirements. The presented techniques cover macro, mod-
ule, and build system integration, macro-based preparation for compilation to
other languages, and abstraction over program representations used in per-
forming transformations.

This dissertation also suggests uses of language features towards automat-
ing aspects of product-line programming; for example: “alerts” for cross-
platform error handling, a static component system for product assembly, and
API access permission inference as part of configuration management. We
presently do not have a single programming language which is both exten-
sible and has all of those features; rather, we use a mixture of our research
languages Erda, Magnolia, and Magnolisp for purposes of illustration.

This dissertation furthermore outlines a production tooling strategy that
is centered around a “mouldable” programming language (of a combined
nature of those research languages), with the idea being that the language
will, for example: incorporate production support functionality; mould itself
to meet the needs of different product families; integrate with both generic and
platform-specific tools and languages; and be supported by its own associated,
language-aware programming environments.

Ideally, I would like to show that the presented strategy can serve as the
basis of a comprehensive set of product-line tools, such that it makes niche
platform support cost effective, for many different kinds of product families.
Alas, this has not been established, empirically or otherwise, although pre-
vious findings by |Voelter| [2014] from applying similar tooling to a similar
domain (i.e., embedded systems development) do support the assumption of
achievable comprehensiveness and cost effectiveness.

1.1 Motivation

Since cross-platform development has its essential complexities, which are in
some ways aggravated when niche platforms are involved, one ought to be

2Hygiene is the moral equivalent of lexical scoping at the macro level [Adams,[2015]. Hygienic
macro expansion ensures that names retain their original sites’ lexical scope determined meanings,
which helps avoid unintended interactions between different macro definitions and uses, for more
reliable composition of program fragments.

1. INTRODUCTION

sufficiently motivated before attempting to architect a cross-niche-platform
codebase.

1.1.1 Why Care about Niche Platforms?

Some might question the usefulness of being concerned about better arming
developers to target niche platforms. Is it not easier to just have the entire user
base switch over to mainstream platforms?

Switching to better-supported platforms can indeed be a pragmatic deci-
sion where suitable platforms are available, and one has control over platform
choices. An embedded application, for example, might come with bundled,
dedicated hardware, without exposing the underlying platform to the end
user, making the choice of that platform a mere implementation detail. When
it comes to user-facing platforms, one might be in a position to influence (or
dictate) the platform acquisition policies of an organization (e.g., which smart-
phone models are “standard issue”). Switching has its costs, however, and
non-IT businesses in particular can be hesitant when it comes to adopting the
latest operating systems.

There also are niche application domains for which there are no suitable
mainstream platforms to which to switch. For example, the highly parallel
hardware setting of a modern GPU does not host a general-purpose system
of today, and one must choose to program against specialized offerings such
as CUDA or OpenCL. Even when the hardware is capable of hosting a main-
stream system, an application may require platform characteristics that no
mainstream platform provides; for example, some of the most popular Linux
distributions (e.g., Debian and Ubuntu) are also widely deployed at the higher
end of the embedded hardware spectrum [UBM Electronics| [2012], but do not
provide the real time and robustness guarantees required by some embedded
applications.

Even in cases where switching platforms is a viable option, there may be
reasons to keep supporting a niche platform. Android and iOS have overtaken
the smartphone market for the time being, but for instance the previously
dominant Symbian OS still has an installed base, due to having shipped in
large volumes for many years (particularly on Nokia smartphones).

Some prominent mobile operating systems of their time
(also used on smartphones)
Palm OS+ [' ' —T * ’ *
Symbian OS+ | |
BlackBerry OS-+ I |
i0OS—+ |
Android + = % = % A] .]
1995 2000 2005 2010 2015

Lifespan (based on public OS release dates)

A software developer of today might still find some attraction in Symbian:
it is largely abandoned, and thus no longer a “moving target;” its quirks are
by now well known in the right circles; and there is still a dearth of off-the-
shelf applications for it. An educated end user might choose Symbian for low
price, recycling opportunities, or a wealth of choice of presently unfashionable
physical device form factors (e.g., “candy bar,” “slider,” or “flip” phones, or

4

1.1. Motivation

Figure 1.1: Some of Nokia’s Symbian-based smartphones (from top-to-bottom
and left-to-right): the candy-bar-shaped Nokia 6120 Classic; the taco-shaped,
gaming-oriented N-Gage; the horizontal-touchscreen-enabled Nokia 7710; the
square-shaped Nokia 7600; and the QWERTY-equipped Nokia E71.

designs with a hardware QWERTY keyboard or a swiveling screen); some
example form factors are shown in figure .1}

1.1.2 Challenges in Niche Platform Development

Writing code specific to a platform with little mind share is a risky invest-
ment as the platform may get discontinued with little noticeE' When writing
a new application for a platform of uncertain future one likely wants to keep
the codebase somewhat portable to other platforms. Writing portable code
for heterogeneous platforms is difficult, however; even when their developer
offerings support some common technologies (e.g., the C++ language), the
commonalities are unlikely to cover everything that is required in a full appli-
cation.

Rapid improvements in the hardware specifications of a particular device
category also make portability harder. Many of the design decisions made
initially for the Symbian platform, for example, were due to hardware con-
straints no longer considered current by the time smartphones overtook the
“feature phone” market. Platform-level design decisions tend to some extent
be exposed to application programmers as well, and have to be accounted for
in writing portable software. Fortunately, platform vendors typically try to
hide such decisions in any provided cross-platform APIs, such as any POSIX
compatibility layer.

In the case of niche platforms, one tends to be highly dependent on vendor-
provided developer offerings, which in turn tend to be quite different between

3Sometimes, as in the case of Nokia’s Symbian-based S60 platform, the manufacturer an-
nounces a schedule for discontinuation ahead of time, but this appears to be harmful to sales

[Wood) 2014].

1. INTRODUCTION

vendors, and of varying quality. In a cross-platform scenario one then has the
challenge of learning to use each platform’s tools effectively, or—as I advocate
in this dissertation—setting up a common, familiar set of general-purpose
tools as a way of reducing exposure to platform-specific tools. When setting
up such general-purpose tools, and adapting them to niche platform specifics
as required, one should be prepared to go it alone; niche platforms have small
developer communities, after all, consisting of individuals of different tastes
and skill sets when it comes to tools development.

1.1.3 Cost Effectiveness of Targeting Niche Platforms

In considering the potential rewards of targeting niche platforms, I make
the general assumption that the smaller size of a niche platform’s potential
customer base is offset by better discoverability of applications. This is a
reasonable assumption for small vendors without large marketing budgets; if
one cannot afford to “buy” visibility in a sales channel, it helps discoverability
if there are few available applications of similar functionality, due to few
developers targeting the platform. Granted, popular platforms have far more
sales potential, but a realistic software vendor acknowledges that best-seller
applications realizing that potential are an exception rather than the norm.
Also, as competition tends to drive prices down, a niche platform may allow
for higher per-unit pricing; thus, for as long as the higher unit sales potential
of popular platforms is not realized, a less popular platform may well be more
profitable.

If the expected rewards for an average application are comparable, then
cost-effective development for niche platforms boils down to achieving com-
parable development costs, despite any lack of supporting facilities in the
platform ecosystem. Language is a tool for abstraction, and my thesis is that it
is possible to an extent to domain engineer an application codebase in which
each target platform is just a variation, to be abstracted over in terms of com-
mon language technology. The idea is that at least at the level of configuration
management and software composition each platform should be treated alike.
Any vendor-specific tools and libraries used for other aspects of development
can be of varying quality, which is where differences in cost arise.

1.2 Domain Engineering

There are many aspects to domain engineering [Harsu, 2002]], but in essence,
it is a discipline for developing software for reuse. As in any engineering
discipline, the aim is to be systematic about the way one goes about doing
that, whether it comes to methods, tools, or practices.

In the context of cross-niche-platform development, I see domain engi-
neering as a possible way to tame complexity, by systematically capturing
platform knowledge as code and other reusable artifacts. Real-world appli-
cations can easily get quite complex (accidentally or essentially), and multi-
platform, multi-product lines have additional dimensions of complexity. One
must learn the specifics of the target platforms (e.g., discover their defects and
find workarounds), and find solutions to meet the specific requirements of the
product line. Through domain engineering, we can hope to capture and reuse

6

1.3. Configuration Management

that information as artifacts, be they components, language extensions, make
rules, or something else.

For purposes of domain engineering, then, we might hope to write code in
a language that is able to directly express manageable-size units of reuse that
are suitable for composition, rather than having to rely on design patterns to
encode them in terms of other constructs (e.g., a mixin can be represented as
a C++ class with a parameterized superclass). In other words, we want to be
able to identify some entities out of which software might be composed, and
encapsulate them as first-class entities in the language, so that we can integrate
them in different compositions with the help of a composition mechanism
provided by the language [Sunkle et al.| 2008].

In this dissertation, I focus on “components” consisting of data structures
and associated operations as such language entities, and “component systems”
as expression and composition mechanisms for those entities; I elaborate on
the nature of those entities and systems in section It would be possible
to do domain engineering in terms a different kind of unit of composition.
For example, a feature is an increment in program functionality, and [Prehofer
[1997] has suggested having a feature construct in a programming language.

In our context it is not merely the choice of unit of reuse that is inter-
esting, but also the interchangeability of such units. Since the introduction
of feature-oriented programming, for example, there has been debate as to
whether it is important for features to have interfaces [Kastner et al.| 2011].
For organizing reusable cross-platform code—regardless of the chosen unit
of reuse—it would appear particularly useful for the units to have (abstract)
interfaces [Britton et al.}[1981], which can be detached from specific units. This
is because it is useful to be able to choose from alternative implementations
of the same functionality, to pick one that is suitable for the target platform,
without affecting code that uses that functionality.

Assuming suitable language support for encapsulation (with interfaces),
I believe that domain engineering can be a practical solution for abstracting
over platform-specific ways to access platform services. It is normally APIs
that provide access to system services, after all, rather than some functionality
built into a language. To abstract over the required services, one can define
corresponding platform-agnostic interfaces, and implement them for all the
targeted platforms. I do not believe it is feasible to maintain implementa-
tions of complete, correct, and current platform abstraction layers for multiple
evolving platforms, and even if that were feasible, it would hardly be cost ef-
fective to do so for niche platforms. Luckily, a single product line is unlikely to
require all conceivable system functionality, and it may be feasible to maintain
large enough system abstraction APIs to cater for product line needs, even if
those APIs must be maintained in-house by an independent software vendor
(ISV).

1.3 Configuration Management
In this dissertation, I consider the term configuration management to mean sys-
tematically dealing with different software system configurations. Methods,

tools, and processes for doing that become particularly important in the con-
text of product-line engineering, where the goal is to be able to easily scale to

7

1. INTRODUCTION

a large number of different product configurations; indeed, some have found
that switching to a product-line practice can quickly enable the enlargement
of a product portfolio [Hetrick et al.,[2006].

A central aspect of configuration management is to identify the different
configurations, and to keep track (or deduce) facts about their properties, to
support repeatable builds, for example. The term “configuration manage-
ment” has for decades been used in a somewhat broader sense to mean a
systems engineering process that is not only concerned with configuration
identification, but also the tracking of configuration changes through product
lifetimes. A more narrow definition suffices here, as change control is not
discussed. However, it is implicitly assumed that software assets are stored in
such a way that changes to them can be tracked with a version control system
(e.g., Git or Subversion). Itis furthermore assumed that the assets may include
artifacts stating facts about different product configurations, which then can
also be version controlled.

I use the term variant to refer to any valid configuration for a system,
whether its codebase has been domain engineered or not. I assume that there
is some specification formalism that may be used to specify configurations,
and that a large enough set of configuration parameters (specified in terms of
that formalism) uniquely identifies a variant.

Modeling of variants as sets of configuration parameters is related to the
concept of “feature modeling.” That concept was first introduced as part of
Feature-Oriented Domain Analysis (FODA) [Kang et al.|, 1990], which is a method
for discovering and representing commonalities among related software sys-
tems. A feature model [Batory}2005] defines features and their usage constraints
in a product line, and thus provides a closed-world view of all legal feature
combinations. Due to our cross-platform development focus, we should per-
haps be more concerned with different implementations of functionality than on
features in distinguishing product-line members. After all, a cross-platform
application codebase is likely to contain platform-specific implementations of
individual components, and the application must be composed out of target-
compatible implementations.

We might get quite far by expressing such target-specific compositions in
terms of a suitable component system’s mechanisms, but that alone is not
sufficient if we want our configuration management solution to make it pos-
sible to capture further domain knowledge about target platform variability.
Such knowledge is essential for building; even the exact same software com-
position (using the same APIs) might link against different external libraries,
and have to be built with different toolchains and options depending on the
target. There are also likely to be differences in the way the software has to be
packaged for deployment, and that process might also involve code signing
(and key management). In our case we also have to make sure that we pick
the appropriate target language to generate for any components that require
translation into vendor-toolchain-supported languages.

It is safe to say that configuration management challenges compound in a
cross-platform setting due to target platform variability. There can be signifi-
cant differences not only between platforms, but also platform revisions. The
same can be said about different releases of platform-specific software devel-
opment kits (SDKs). Tizen’s native programming offering, for example, has
seen significant changes over time: a native application framework was in-

8

1.3. Configuration Management

troduced in Tizen 2.0, with its C++-based APIs seemingly derived from those
of the bada [Morris, 2010] operating system; Tizen 2.3 replaced the framework
with a C-based one that is accompanied by the Enlightenment Foundation
Libraries (EFL).

From a build configuration point of view, the most significant differences
would tend to be platform API changes and build toolchain changes. When
building software, both the intended target platform and the SDK used for
building tend to matter; in particular, when mixing and matching target plat-
forms and SDKs, one should be sure to use only common subsets of target
platform APIs, lest either build or execution fail due to missing APIs. There
can be incompatibilities beyond APIs; for example, Symbian’s EKA?2 real-time
kernel introduced support for DLL global writable static data, but many SDKs
for EKA2-based platform releases shipped with a compiler that was defective
with respect to that feature [Hasu) 2010].

To address the challenges of maintaining information about interesting
legal compositions of product-line assets, we might seek to minimize the
number of details that we need to maintain manually. One way to do that is
to derive some configuration parameter values from others. Another way to
do that is to infer some properties of component compositions by analyzing
the code of those compositions; suitably designed programming languages
can both mechanize the creation of those compositions, and allow for more
accurate static analysis. A third way is to exploit any useful domain knowledge
in vendor-specific build tools; for example, it may be that by providing a small
number of details about a piece of software being built, a vendor build tool
can deduce a suitable way to invoke compilers and other auxiliary build tools.

If the aim is to support even lone software developers in flexibly coping
with their cross-platform product portfolios, I believe it is most practical to
have lightweight tools without rigid requirements for completeness and cor-
rectness. Therefore, rather than doing closed-world variability (or feature)
modeling, configurations are perhaps better modeled as partial specifications
in an open-world setting. More specifically, any constraints should not have
to be complete, and it should be sufficient to deal with one variant at a timeﬁ
The tools should furthermore assume little about target platform offerings,
due to their varied nature; incorrect assumptions might hamper the use of any
vendor tools, and the domain knowledge encoded in them.

1.3.1 The Konffaa Configuration Manager

I'have previously presented a lightweight command-line-based configuration
manager [Hasul 2010, section 7.2], whose more recent incarnation—named
Konﬁ‘uoﬂ—was used in managing the different configurations of the Anyxporter
application, discussed in this dissertation’s section[4.5| Konffaa is an example
of a tool for maintaining sets of variant-specific configuration parameters,
some of which can be computed based on explicitly specified ones. Especially
parameters specifying the target platform’s name, version, and SDK version

4At any given time, a domain engineer may have some products under development or
temporarily or permanently unmaintained, and it would be unhelpful to require that all assets and
configurations of a product line be kept complete and consistent at all times to avoid complaints
from management tools.

5Documentation: https://bldl.ii.uib.no/software/pltnp/konffaa.html

https://bldl.ii.uib.no/software/pltnp/konffaa.html

1. INTRODUCTION

can often be used to deduce many others, typically relating to available tools
and system APIs. As an example of platform knowledge captured with a
configuration manager, a parameter indicating the availability of the Music
Psll%yer Remote Control API for the S60 platform might be defined for Konffaa
a

(define-attribute have-mplayerremotecontrol
(and (<= 31 s60-vernum 32)
(= kit-vernum 31)))

Konffaa’s variant specification language is implemented as a #lang for
Racket (the #lang mechanism is explained in section 2.3.1). The konffaa
language augments Racket with syntax for specifying variants. The syn-
tax is macro-defined sugar on top of a purpose-built object system, whose
mechanism for multiple inheritance may be used in expressing commonali-
ties between variants, by inheriting named member values and constraints.
The object system distinguishes between public (exported and serialized) “at-
tribute” and private (unexported) “field” value members, whose values are
computed lazily and memoized. Similarly to Magnolia’s support for declaring
semantic-constraint-specifying axioms, Konffaa also has syntax for specifying
constraints between fields as “axioms,” to be used for checking the validity of
a chosen variant. For example, all S60 configurations might inherit a check for
S60 platform and SDK binary format compatibility:

(define-axiom s60-kit-binary-compat
(assert (or (and (< s60-vernum 30) (< kit-vernum 30))
(and (>= s60-vernum 30) (>= kit-vernum 30)))))

Konffaa operates by processing an input file that describes a variant, and by
then computing a full set of attributes for that variant, which—if the associated
axioms hold—are then output essentially as sets of key-value pairs in a variety
of different file formats. The output files may then used to configure other
development tools (most notably build managers) in a variant-specific way.

General-purpose build managers found on niche smartphone platform
SDKs include GNU Make and Ninja; more special-purpose ones include the Qt
cross-platform application framework’s qmake, Tizen’s tizen, and Symbian’s
ABLD and SBSv2. Konffaa presently supports GNU Make and gmake as output
languages, as well as C and Ruby, with the latter two aimed at configuring
programs and custom build scripts. Scripts can be particularly useful for
driving template-based generation of input files for platform-specific build
tools, with which the tools can be invoked as normal in order to benefit from
their platform awareness.

1.3.2 Program Build Configurations

Configuration-manager-maintained, variant-describing configuration param-
eters are abstract requirements (e.g., which features are required and what

®Konffaa is parsed like the Racket language. Prefix notation is used, so that the first symbol
within a pair of parentheses names that form, whose meaning is generally given by the binding
of that name. By convention, Racket and other Lisps use the “minus” sign (rather than a hyphen)
to separate words in names.

10

1.3. Configuration Management

platform is targeted) for building a product implementation out of compo-
nents and any other assets. As there may be any number of ways to assemble
a product that meets a given set of requirement the requirements should be
concrete enough that in combination with any knowledge and decision-making
logic encoded in subsequently invoked tools, the build process will consis-
tently arrive at a specific composition and build configuration for the product.

As a baseline case, each maintained variant configuration might have a
parameter that simply names the desired program composition satisfying that
variant’s abstract requirements, with the name being that of a source file
expressing the composition in a programming language. Another parameter
might name a script for building that composition into an executable, with
any packaging required for deployment. Both the program and the build
script could be somewhat generic, and parameterized with the configuration;
conditional compilation is commonly used in C and C++, for example, as are
variables and conditionals in GNU Make.

Even if we choose to use a composition language that has special-purpose
language for component composition, allowing concise and explicit expres-
sion of desired program instances, that may still not fully realize scalable
code reuse across a product line. If our language targets a specific C++ build
toolchain, then our program must have the appropriate #include directives,
and we must build all the C++ source files required by that program compo-
sition, with suitable build options, linking the executable against the required
libraries, etc. If we do nothing to mechanize the determination of suitable
build configurations, then our ability to scale to large numbers of product
variants is likely to be hampered.

As observed by |de Jonge| [2005], reuse between software systems is often
suboptimal due to modularization principles only being applied to structuring
program functionality, while neglecting the possibility of applying the same
principles to the build level. This culture of neglect may in part be due to
limitations of traditional Make [Feldman| [1979] implementations, which make
completeness of build dependencies only achievable in a single makefile, and
thus discourage attempts at componentization of build information.

For a product line, at least, it would seem worthwhile to overcome any lim-
itations of build managers in order to represent build dependency information
in a modular and reusable way. There are different approaches we might at-
tempt. If we simply adopted a separate build-level component system for
expressing build dependencies, perhaps in terms of a build manager that sup-
ports components [Dolstra), [2003], there would still be a disconnect between
program components and build components; given a program composition,
we would have to somehow determine which build-level components (e.g.,
object files) it requires.

To avoid that disconnect we might instead use a component system that
combines program and build components; Knit [Reid et al}[2000], for example,
is a component system for C such that its units can express not only required
and provided symbols, but also files to build and compiler flags with which
to build them.

Even for a single component interface there might be multiple interchangeable implementa-
tions from which to choose; for example, the asset pool might contain both GnuTLS and OpenSSL
based implementations of certain encryption-related operations, and a given variant’s target plat-
form might have both of those two popular libraries.

11

1. INTRODUCTION

Knit has the right idea in that expressing compositions in such a language
makes it straightforward to arrange for that language’s compiler to deduce the
overall build dependency information for a given composition. However, for
a cross-platform (and possible even cross-language) setting it is too specific;
for a system dependency, we should not have to name specific files or flags, as
even the same library can have a different file name on different platforms, or
its linking may be different (e.g., object file, static library, or a dynamic library),
or the required compiler options or include paths may differ.

We could achieve “late binding” [de Jonge| [2005] of such build specifics
through indirection, for instance by binding build information to abstract
names, leaving it to other tools concerned with platform specifics to determine
the semantics of those names for a chosen target.

Having such late-bound names is not unlike the way GNU Autotools’
autoconf allows the definition of dependency parameters, which may then
be passed to the configure scripts it generates, with the syntax --with-
name=value. A source-level component system (such as the one in Magnolia)
might allow each component implementation to explicitly state its dependen-
cies by listing such dependency names (e.g., sqlite for a component that uses
the SQLite database API), to be resolved into concrete dependencies later as
necessary. For finer than per-component granularity, we might even annotate
individual types and operations with their build dependencies. Magnolisp
lacks a component system, and infers build facts at an operation-level granu-
larity; its build annotations can list dependency information symbolically, or
as filenames:

[build sglite (+= headers "f.hpp") (+= sources "f.cpp")]

An example case of whole-program inference of facts annotated for oper-
ation implementations is the permission inference solution described in chap-
ter @ In a typical smartphone security model, missing permissions trigger
run-time errors, meaning that it is sufficient to request permissions only for
operations that might get used; build dependencies, on the other hand, must
typically be requested for any operations whose invocations appear anywhere
in a program, to avoid build or link time errors. The Magnolisp compiler re-
moves that distinction by optimizing whole programs to eliminate unreachable
operation invocations and implementations, which also helps avoid unneces-
sary build dependencies in inference results.

1.3.3 Deployment-Time Components

So far I have discussed managing program compositions and build depen-
dencies in terms of components, but components can exist not only during
software development and building, but also during deployment. The Maak
[Dolstra) 2003] build manager supports components, and goes as far as uni-
fying build and deployment by turning building into deployment, and by
consequently also having knowledge of the relationships between binary com-
ponents. In a niche platform context, however, we cannot generally expect to
be able to adopt such a solution pervasively, making it of limited use in manag-
ing binary dependencies. Smartphones, for example, have various restrictions
for installing and running code natively, and the common assumption of cross-
compilation is another complication for build and deployment unification.

12

1.4. Mouldable Programming Languages

Maak, by its nature, acts both as a build manager and as a package manager,
but not all platforms have or require the latter. Platforms that to some extent
isolate applications (and their code) from each other, for instance, probably
have less need for a package manager capable of expressing dependencies
between installation packages (containing binary components and other run-
time assets). For purposes of this dissertation, I assume that each product is
deployed as a single package, and that any run-time dependencies beyond that
package are a part of the platform. If those dependencies must be declared to
ensure availability (or similarly, if associated API access permissions must be
declared), then they translate to build-time requirements for correctly declaring
them.

1.4 Mouldable Programming Languages

“The ability to reason abstractly, to see generality
through the particular, and then to particularize the
general, are very useful for the development of high
quality software.”

Kapur, Musser, and Stepanov|[1981]

Programming languages often require many years of development before fully
realizing the potential of their design principles and goals. So it is with the
programming languages that we have developed, and which I use for illus-
trative purposes in this dissertation. Magnolia and Magnolisp in particular
are research prototypes of languages that aim to be “mouldable’ but as yet
neither one of them individually embodies all the facets of mouldability, i.e.,
flexibility, adaptability, genericity, and robustness; taken together, however,
they do.

Magnolisp flexibly integrates with other tools, and is adaptable through
its adopted #language definition mechanism. Magnolia’s component system
facilitates generic-but-specializable definitions, with axioms supporting alge-
braic specification of semantics for components so that mechanized reasoning
about compositions is possible (consequently, one can hope for more robust
compositions through checking and testing of applicable specified semantics).
These features of the two languages are not mutually exclusive by their na-
ture, and hence I believe that they can be integrated into a single language;
we are not there yet, but chapter|f|envisions how cross-niche-platform devel-
opment in such a “fully mouldable” language might look. In this section I
discuss our existing languages and their niche-platform-friendly features and
characteristics.

1.4.1 Magnolia, Magnolisp, and Erda

It may not be terribly hard to port basic run-time support for a feature-rich
programming language (e.g., Racket) for a given target platform, but it might
also not be all that useful to do so; for writing non-trivial applications mere lan-
guage constructs are not enough, as access to system services is required. T have

Shttp://ii.uib.no/mouldable

13

http://ii.uib.no/mouldable

1. INTRODUCTION

discussed configuration and build managers, but a cross-platform domain-
engineering setting would additionally appear to call for an “API manager.”

Magnolia [Bagge) 2009] is a language for API management and reuse. Its
algorithmic language, while unusually constrained in order to facilitate static
analysis, is otherwise quite ordinary in that its constructs are few and mostly
familiar from other languages. Its component language, on the other hand, is
exceptionally capable, and designed to promote conceptual use of APIs, and
generic and compositional implementation of APIs.

Magnolia features a static component system that supports external linkage,
meaning that a component may refer to others indirectly through a parame-
terization mechanism [Culpepper et al., |2005]; in that respect its component
system is like those of nesC or mbeddr, for example. Magnolia goes beyond
merely syntactic component interfaces, however, and follows in the footsteps
of Tecton [Kapur et al|[I1981] in integrating programming and specification at
the language level, in order to support safer composition. Specifications may
be incorporated as axioms stating semantic constraints as universally quantified
logical expressions relating operations to each other [Bagge and Haveraaen,
2014]. Axioms, in turn, may be defined as part of concepts [Gregor et al., 2006],
or interfaces with integrated specifications of expectations about the behavior
of their operations.

Magnolia’s emphasis on APIs shows also in the way operations can be
invoked uniformly regardless of whether they were declared as functions or
procedures, through a process of “functionalization” to derive functions from
procedures, or “mutification” to translate function uses into procedure calls
[Bagge and Haveraaen), 2010].

Magnolia compiles to other languages, with C++ presently being the usual
choice, one that is also supported by many niche platforms. The compilation
machinery is Eclipse IDE integrated [Bagge, 2013], and the constrained algo-
rithmic language means that there is ample potential for the implementation of
sophisticated refactorings and other interactive, assistive features. Magnolia
is further introduced in section 4.3

Magnolisp is a language that I conceived to experiment with the areas in
which I felt Magnolia was still lacking, namely integration with other tools
(or use standalone), large-scale core asset management, and syntactic “self-
extensibility” [Erdweg et al.,2012]. Superficially, Magnolisp resembles Racket;
it was not a goal to innovate in the area of algorithmic language syntax, and
familiar is better for remembering. Unlike Racket, however, Magnolisp is
designed for ease of static reasoning, by making language-semantic choices
similar to Magnolia’s. Magnolisp also has a core that is designed for easy
deployment, in that the core is straightforwardly translatable into other lan-
guages.

Magnolisp is not tied to an IDE, and its compiler is quick to start up, and has
both a command-line interface (CLI) and an API. Similarly to Konffaa, the com-
piler can also output build information in a variety of languages, which helps
with flexible use and integration. Magnolisp does not “externalize resource
management” [Felleisen et al.,[2015] by having IDE-managed “projects,” but
rather it is enough to express a program configuration in the language; there
are no complaints about modules that are not loaded for that program, which
enables a “divide and conquer” approach to large domain-engineered code-
bases. Magnolisp is also an experiment in macro language and system reuse,

14

1.4. Mouldable Programming Languages

as it integrates with Racket to reuse its facilities for language self-extension.
Magnolisp is discussed in more detail in section

Magnolisp’s exploitation of Racket’s language definition machinery means
that it is possible to create families of languages on top of the Magnolisp infras-
tructure. For example, while magnolisp is Magnolisp proper, there is also a
magnolisp/base language for implementing the Magnolisp run-time library,
and magnolisp/2014 as a language for backward compatibility. Similarly, our
Erdac, ., language with experimental failure processing syntax and semantics
is implemented as the Magnolisp-based language erda/cxx. While our more
established Magnolia language already has guard syntax for declaring partial-
ity of operations in an abstract way, and alert syntax for declaring possible
concrete error conditions, the language is still lacking in the area of error prop-
agation and handling; the Erda family of languages (which includes Erdac.)
is our tool for exploring such error management facilities without disrupting
the development of Magnolia. Erda is discussed in more detail in section 5.4}

1.4.2 Module and Component Systems

In the context of domain engineering and large-scale systems development,
the modularity mechanisms of the used programming languages become im-
portant. While many languages are lacking in this area, they do tend to have
some mechanisms for splitting a system into smaller sub-systems of an inter-
nal implementation and an external interface [Kastner et al} [2012]. There are
two subcategories of such modularity mechanisms that are particularly rele-
vant to this dissertation, and I use the (somewhat overloaded) terms “module
system” and “component system” for them.

A module system is a compile-time code organization facility, without ex-
ternal configuration or separate interfaces. In such a system code is organized
as modules that have their own namespace, and fixed static imports and ex-
portsﬂ For example, Magnolisp adopts Racket’s module system [Flatt, 2002]
for its code organization, a system which is suitable for compile-time composi-
tion and namespace management and the like, more recently even supporting
nested modules [Flatt, [2013]. It is not ideal for expressing compile-time vari-
ability, however, as it lacks a parameterization mechanism to cater for vari-
ability inside a module. It is also not ideal for abstraction in cross-platform
development, as module interfaces are not separate from implementations.

A component system is both a code modularity and reuse mechanism, with
separate interfaces to allow for programming against abstract APIs, and with
configurable implementations to allow for specifying internally used APIs’
implementations. In such a system code is organized as components that
have at least an (exported) interface, sometimes called its provides interface [van
Ommering et al|,[2000]. A component may be fully or partially implemented
(ornot atall), and any missing parts of the implementation must be specified as
parameterizable imports, which constitute the component’s requires interface.
Suchinterfaces make it possible to obey the “principle of external connections,”
which is to define components separately from their connections [[Flatt,[1999].

In Magnolia terminology any top-level definition is a “module,” but I avoid using the term
in that sense here.

15

1. INTRODUCTION

r%% Nafine f4hit T Floatina point pi
40 Detfine 64bit IEEE Tloating point nu

i 41- program ﬂoatUnprotectedeit_Cxx ={

42 use ieee754float64rawCxx .

43 [ATEmEL i R lprugramquatUnprute:tedelthx
44 [leq trap => <=_]]

45 [normal_to_raw_arithmeDEﬂneSAPI'

type Float«584» (external, use)

type Float (use) = Float«584»

predicate _<_«1134»{a : E, b: E) (predicate, use)

predicate _>= «1136»{a : E, b: E) (predicate, use)

predicate _>_«1135»(a : E, b: E) (predicate, use)

function d_1_pi«333x() : Float«384»{] (external, use)

function d_2_pi«391»() : Float«584»{] (external, use)

function d_2_sqripi«592s() : Float«584»[] (external, use)

function d_abs«613s{x : Float«584»[]) : Float«584=[] (external, use)
function d_acos«590s(x : Float«584»[]) : Float«584»[] (external, use)
m i ~ e function d acosh«647»(x : Float«584»(1) : Float«584»(] (external,

46 use floatRawWrappers;
47 use floatPredicates;
48 use floatProperBoundedInte
49 use floatGradualIntegerPre
58 use orderingOperationsFror
51 }[names_to operators];

ra 1lo

57 ¥ The alme
/ The algebra

i 53 satisfaction floaté

Figure 1.2: Hover documentation in Magnolia’s IDE.

Depending on the component system, composition may happen statically
(at compile time) or dynamically (at run time). Racket’s “units” system [Flatt,
1999] is an example of a hybrid system whose components are first-class val-
ues, but in which static information about components is exploitable for con-
venience in specifying compositions. Examples of static-only component sys-
tems fitting my definition are those of Knit [Reid et al) [2000], Koala [van
Ommering et al} 2000], and nesC, which are all languages geared towards
embedded software development.

A specific motivation for having a static-only system in Magnolia is to en-
able components to serve a role similar to higher-order functions in supporting
parameterization, while still leaving all operations resolvable at compile time.
For example, upon seeing the code for the higher-order Racket functio

(define (modify-first! vec modify)
(vector-set! vec 0 (modify (vector-ref vec 0))))

we cannot inspect the modifying operation for purposes of reasoning. Mag-
nolia has no higher-order functions, but the modify operation could instead
be specified as part of a component’s requires interface.

Magnolia is unusual in its support for concepts, i.e., interfaces defining
both syntax and behaviorm Another way in which Magnolia differs from
Knit, Koala, etc. is that component implementations” exports need not be
listed explicitly, but rather everything that is implemented (or used from other
implementations) gets exported by default; this design choice easily results in
large export sets, making tool-provided information (e.g., hover help in an
IDE, as shown in figure quite important in understanding Magnolia code
[Bagge, 2013].

Magnolia’s component interfaces (as declared with concept) may list types,
functions, procedures, and predicates as named abstractions over data

10Racket’s define form binds a name to a value, with the name in this case being
modify-first!, and the value being a function. Instead of using define’s function definition
shorthand form, an equivalent definition could be written as (define modify-first! (A (vec
modify))).

"'Magnolia’s component language does include a signature operator for stripping out the
axioms of a concept, in order to get a “plain” syntactic component interface.

16

1.4. Mouldable Programming Languages

structures, expressions, statements, and predicate expressions. Any imple-
mentations are given separately, and may be natively in Magnolia, or exter-
nally (and opaquely to Magnolia) in a target language (such as C++). Any
parts of an implementation that are left abstract are specified with require,
and a fully concrete implementation may be declared as a program, to have its
operations made available for invoking through the program executable’s CLI.
An implementation’s satisfaction of a concept is stated by declaring that it
models the concept. A concept’s axioms—which abstract over assertions—
are a property of the concept, and they are implemented for it in Magnolia.

1.4.3 Algebraic Specification and Reasoning

Reuse of APIs is important in a product-line setting, while having alterna-
tive but semantically interchangeable implementations of APIs is useful for
abstraction in a cross-platform setting. A language implementation tends to
complain about syntactic mismatches between API declarations, implemen-
tations, and uses, but in aspiring to correctness, it can be useful to also have
language support for helping to ensure matching semantics through specifi-
cation and automated reasoning.

Magnolia’s algorithmic language has been suitably restricted for more ef-
fective static reasoning, by disallowing or carefully controlling side effects,
aliasing, and dynamic dispatch, for example. The language includes axioms
and assertions for informing Magnolia about semantic constraints between
different (algebraic) expressions using the operations of a specific API. This
kind of language-integrated algebraic specifications differ from the more com-
monly supported pre- and postcondition specifications, which relate a single
operation’s inputs to its outputs [Bagge and Haveraaen| [2014].

Magnolia’s component language is quite agnostic with regard to the algo-
rithmic language used, and should thus accommodate different selections of
declarations, expressions, and statements [Bagge and Haveraaen) 2013]. Con-
cepts do require some language for declaring abstract types and operations,
of course, and there must also be language for defining implementations (i.e.,
data structures and algorithms) for them, and for invoking the operations;
the algorithmic language of Magnolisp, for example, also meets these require-
ments.

Formally, a “many-sorted algebra” [Loeckx et al.,{1996] can be used to cap-
ture the semantics of a Magnolia component implementation, thus providing
a basis for reasoning about Magnolia’s algorithmic language in the context
of that component. Magnolia’s component language, in turn, builds on the
theory of “institutions” [Goguen and Burstall, [1992], which provides tools
for reasoning about concepts and implementations and their satisfaction re-
lationships; the language supports systematic changing of interfaces through
“renamings,” for example, making such reasoning non-trivial.

Magnolia’s restricted language and integrated algebraic specifications open
up many possibilities for static reasoning. If opaque target-language opera-
tions are suitably annotated, for example, inferring facts for larger program
fragments from their code can be quite accurate, as discussed in chapter
Axioms, in turn, have applications to program transformation, formal veri-
fication, and testing, at least: axioms might be interpreted as rewrite rules
in transforming programs, perhaps for purposes of API-specific optimization

17

1. INTRODUCTION

by a compiler [Bagge and Haveraaen| 2009]; it may be possible to prove that
a component satisfies its stated properties, for assurance of correctness; and
axioms can serve as a basis for automated test generation.

1.44 Axiom-Based Testing

In axiom-based testing [Gannon et al., [1981]], test cases are generated automati-
cally for an API implementation based on applicable axioms, probably using
randomly-selected, type-compatible data for the axiom arguments, with the
programmer possibly providing some guidance about how to select the test
data. In practice this might mean the language (or its implementation) provid-
ing a way to request a program whose “main” routine runs all of the program’s
axioms (containing assertion statements, as in Magnolia) under a test harness
that collates and reports the results. One might create several different pro-
gram configurations in order to exercise a large portion of a product line’s
components, thus avoiding much of the need to write unit tests by hand.

Ideally, frequently used test configurations would be such that the devel-
oper can run the tests on his or her workstation conveniently, without any
interaction. In such configurations, one would avoid components that can
only be tested on a niche target, or rely on workstation services or peripherals
that require manual setup before use, for example. Where no suitable alterna-
tive component implementations are available, one can resort to “mocking” to
create components used only in test configurations. A mock is an implementa-
tion of a component, object, or operation that imitates the behavior of a proper
implementation.

Mocking can be particularly useful in testing embedded software, which
is often developed alongside the hardware it is to run on; the target hardware
may be undecided, unavailable or unfinished, or perhaps just too expensive to
get for every developer [Grenning| [2011]]. Niche platforms” APIs and services
may suffer from a lack of attention, making them more likely to not behave
as advertised; in discovering and narrowing down such problems, a cross-
platform product line’s selection of components to test with and platforms to
test on can even turn out to be an advantage.

1.4.5 Source-to-Source Compilation

A programming language implemented by generating source code allows for
reuse of existing infrastructure for the target language. I use the term source-to-
source compiler (or transcompiler for short) for such language implementations.
A transcompiled language can enable abstraction over cross-cutting concerns
like target language versions, implementations (and their defects), and idioms.
If the source-code-generating compiler furthermore produces human-readable
output of a high abstraction level, then it also has a low adoption barrier in
the sense that it can be regarded merely as tools assistance for programming
in the target language. [Hasu) 2014]

The idea of generating source code for further processing by other tools is
not restricted to the programming language proper, but can also encompass
build utilities, resource compilers, etc.; e.g., Konffaa and Magnolisp can both
generate build information in the GNU Make language (among others). Hav-
ing the language export its knowledge about a program composition avoids

18

1.4. Mouldable Programming Languages

the need to manually maintain that program’s build specifications, possibly in
multiple formats (to support different build managers). The language imple-
mentation also has knowledge about implemented APIs, and one might also
want to generate source code defining API bindings for other languages in
addition to generating an implementation in the target language; e.g., Luais a
popular choice for application scripting, and Lua bindings can be implemented
in C (or C++).

Like any compiler, a typical source-to-source one involves parsing and
some intermediate (program) representations for analyses and transforma-
tions, and I discuss those implementation aspects in chapter [2]and chapter
with the former chapter covering not only parsing but also user-defined trans-
formations (through macros) during parsing. Transcompilation also involves
pretty printing to produce program text, possibly with code formatting for
better human comprehension; we have discussed those compiler implemen-
tation aspects previously in a paper describing a code formatting architecture
structured as a pipeline of “token processors” [Bagge and Hasul [2013].

The Elementg| toolchain by RemObjects is an example of shared infras-
tructure for transcompiled languages. As of version 8.3 it supports Oxygene,
C#, and Swift as source languages, with Oxygene being the vendor’s own de-
sign, influenced by Object Pascal. The choice of three essentially equivalent
general-purpose source languages helps cater for different tastes, but a typical
ISV would probably pick just one of them as the in-house standard. Elements
supports C# (with .NET), Objective-C (with Cocoa), and Java as translation
targets, thus enabling abstraction over those languages from a single source
language and development environment.

Elements appears geared towards programming against target framework
APIs, either directly, via “mapped types” (which map source types and their
operations to target-specific ones at compile time), or via programmers’ own
(potentially cross-platform) APIs; in this respect its philosophy is aligned with
my view that maintaining comprehensive platform abstraction layers (in the
style of Qt) is cost ineffective in a niche setting. However, I would additionally
contend that for any code that is in any case target specific due to its direct use
of target-specific APIs, it might be useful to program in a target-specialized
variant of the chosen source language, such that the language can be made
to include select target language abstract syntax, and perhaps also further
syntactic abstractions over target-idiomatic design patterns.

1.4.6 Macro Systems

A macro is a compile-time-evaluated function that maps syntax to syntax.
Macro expansion translates away macro uses according to the macro-associated
syntax mappings.

Lisp macros Lisp macros are syntactic, in that they operate on tree-like syntax
representations rather than strings or token sequences.

Scheme macros Scheme is a flavor of Lisp in which macros default to being
referentially transparent and hygienic, although it is still possible to explicitly

12http ://elementscompiler.com

19

http://elementscompiler.com

1. INTRODUCTION

violate those properties as desired. A referentially transparent macro [Clinger
and Rees|[1991] is such that its definition’s uses of bound identifiers retain their
meaning irrespective of the bindings in effect at the macro’s use sites. A hygienic
macro [Dybvig et al,[1992; Kohlbecker et al|[1986] avoids unintended capture
of identifiers. The two main aspects of hygiene are to ensure that references
introduced by a macro can only be captured by bindings introduced by the
macro, and that bindings introduced by a macro can only capture references
introduced by the macro [Adams|,2015]. Referential transparency and hygiene
together cause macros to respect lexical scoping.

Schemers commonly write macros in a “macro-by-example” [Kohlbecker
and Wand) [1987]] sub-language with patterns for matching input syntax and
templates for building output syntax; such a sub-language is defined by the
standard syntax-rules [Kelsey et al)[1998] form, for example. What enables
programmable-yet-hygienic macros in Scheme is its syntax object data type for
lexical-information-enrichable S-expressions [Dybvig et al., [1992]. Even with
program fragments reified as syntax objects, it is still possible to use forms
such as syntax-case [Dybvig et al, [1992] to do pattern-based matching on
syntax, with the added flexibility of being able to programmatically inspect
and manipulate syntax as data.

Racket macros Racket is a descendant of Scheme, but its macro system has
evolved further towards being a “wider compiler API” [Barzilay et al., 2011}
Flatt et al., 2012} Tobin-Hochstadt et al., 2011]]; I discuss its additional features
and characteristics elsewhere in this dissertation as appropriate. Racket previ-
ously maintained hygiene during macro expansion by marking and renaming
syntax objects [Flatt et al.,[2012]. [Flatt| [2015] recently introduced a new model
of macro expansion based on tracking bindings as sets of scopes, and this
simpler model might provide a more approachable basis for introducing a
similarly capable macro system into other languages (Magnolia, perhaps, in
our case).

Racket macros: A primer As in Scheme, the syntax object data type plays
a key role in Racket’s macro system. We can augment a plain S-expression
“datum” with lexical-context information to turn it into a syntax object, for
example using the lexical context of another syntax object ctx to turn a plain
symbol into an identifier:

> (datum->syntax ctx 'list)
#<syntax list>

It depends on ctx whether the resulting identifier refers to Racket’s 1list-
constructing function. Identifiers are further discussed in section[2.3.3]

Similarly to Lisps’ traditional quasiquotation mechanism for building S-ex-
pressions, there is a quasiquotation mechanism for syntax objects: #’ is a syntax
quote, #* is a syntax quasiquote, and #, is a syntax unquote. For example, writing
#'(list 42) is equivalent to writing #° (1ist #,#'42). Syntax-quoted code
is further discussed in section[2.3.5

Racket’s #’ notation also supports pattern variables as an alternative (or
complement) to using quasiquotation. For example, for another way of con-

20

1.4. Mouldable Programming Languages

structing the above syntax, we can bind the literal syntax 42 to the pattern
variable num with

> (with-syntax ([num #'42])
#'(list num))
#<syntax:4:0 (list 42)>

The with-syntax [Dybvig et al., [1992] form is similar to let, but introduces
pattern variable bindings rather than program variable bindings. The term
“pattern variable” is descriptive as with-syntax actually performs pattern
matching between the left- and right-hand sides of its binding forms. Thus,
for additional deconstructing, we could also write

> (with-syntax ([(num _) #'(42 (43 44))1)
#'(list num))
#<syntax:5:0 (list 42)>

Another similar syntax pattern matching form in Racket is the Scheme-
standard syntax-case [Dybvig et al), [1992] form, which also binds pattern
variables. The definition of the static-cond macro later in this section is one
example of the use of syntax-case.

The syntax-rules [Kelsey et al[1998] form is similar to syntax-case, but
it avoids exposing syntax objects explicitly, instead relying on just patterns,
templates (similar to #” -quoted forms), and pattern variables. A syntax-rules
expression evaluates to a function that takes a syntax object as an argument:

> ((syntax-rules ()
[(C num) (+ num 1D])
#'(list 42))
#<syntax:6:0 (+ 42 1)>

The define-syntax-rule form combines implementing a syntax-trans-
forming function in terms of syntax-rules, and binding that function as a
named macro. Section[2.3.2]has some examples of using define-syntax-rule.

In Racket, a macro is defined by creating a transformer binding to a syntax-
transforming function. For example, we can use define-syntax to bind m42
as a macro whose uses expand to syntax for (list 42):

> (define-syntax m42 (A (stx) #'(list 42)))
> (m42)
'(42)

Binding m42 as a transformer means that the name can be referenced within
code aimed at run time, but also that the definition’s value (e.g., as given by
the A expression above) is already available at macro-expansion time.

Racket’s module system is compatible with macros in such a way that it
is possible to provide macros to export them from a module, or to require
macros to import them from a module. It is also possible to provide and
require values for-syntax, which makes them available for use at compile
time, within macro implementations. For example, we can implement a macro
mrt that expands to a literal number approximating n

3Similarly to define, there is shorthand syntax for binding transformer functions with
define-syntax;i.e., we can write (define-syntax (mm stx)) instead of writing out the A
expression explicitly.

21

1. INTRODUCTION

> (require (for-syntax (only-in racket/math pi)))
> (define-syntax (mmt stx) (datum->syntax stx pi))
> (m70)

3.141592653589793

One of the more Racket-specific macro-system features used in this dis-
sertation is sub-form expansion, which allows a macro to expand a sub-form
appearing in its input, and then inspect and modify the result of that expan-
sion. A sub-form may be expanded with the local-expand [Flatt et al [2012]
function, which is quite versatile in terms of what it is able to expand, and to
what extent. Section[2.3.4shows its use to expand essentially an entire module
body, but it can also be used to expand a single expression. For example, we
can write a macro swap-branches that expands its input up to any if forms,
and then swaps the “then” and “else” branches of an if form appearing imme-
diately in the expansion result. In this example, we assume that an expression
such as (and 1 2) expands roughly as (if 1 2 #£):

> (define-syntax (swap-branches stx)
(with-syntax ([(_ sub) stx])
(define x (local-expand #'sub 'expression (list #'if)))
(syntax-case x (if)
[(Af c thn els) #'(if c els thn)])))

> (swap-branches (and 1 2))
#£
> (swap-branches (and #f 2))
2

Domain uses Macros can help not only language engineers, but also “end
programmers” in taking charge of their destiny, and moulding their languages
on demand as target platforms evolve and domain selections change. Macros
have many potential applications in a niche platform product line, such as: ex-
tending languages with domain-specific features; implementing other, higher
level, more specialized compile-time mechanisms (e.g., conditional compi-
lation or mapped types); or allowing the programmer to code compile-time
computations for better run-time efficiency. If side effects during macro expan-
sion are acceptable, one might even generate auxiliary resource files required
for implementing an abstraction.

There are cases where it is desirable for a programming language to have
features too specific for being built into a general-purpose language. For exam-
ple, the Qt framework (as of version 5) relies on custom C++ extensions for its
own events mechanism and run-time introspection support, and implements
them in terms of C++ preprocessor macros and an external moc (Meta-Object
Compiler) code analyzer and generator; if C++ had a more powerful macro
language, such external code generation might be unnecessary.

A sufficiently powerful macro-enabled language can also serve as a basis for
implementing other, less general compile-time mechanisms. As an example,
we might want Magnolisp to have language for conditional compilation in
the style of the C preprocessor’s #if #elif #else #endif construct.
To achieve that, we might simply use Racket as the conditional expression

22

1.4. Mouldable Programming Languages

language, and define a static-cond construct as a macroE]

(define-syntax (static-cond stx)
(syntax-case stx (else)
[
; default suitable for definition (but not expression) contexts
#' (begin)]
[(_ [else thn ...])
; explicit default
#'(begin thn ...)]
[(_ [c thn ...] . more)
; evaluate condition c at compile time
(if (syntax-local-eval #'c)
#'(begin thn ...)
#'(static-cond . more))]))

Armed with static-cond in our language, we could then check a compile-
time configuration (with its variables imported for-syntax to make them
available at compile time) to pick different run-time code depending on the
target platform. For example:

(require (for-syntax "config.rkt"))

(define (init-any-ui w)
(static-cond

[(or on-bbl® on-harmattan on-sailfish)

(init-qt-ui w)] ; use Qt for targets that have it
[on-console

(init-ncurses-ui w)] ; use ncurses for console builds
[else

w])) ; headless build (no UI)

Programmers often have their applications do more work at run time than
is fundamentally required, due to language limitations in what compile-time
computations can conveniently (or at all) be expressed. A generic compiler ex-
tension mechanism (supporting programmable computation at compile time)
such as Racket macros may allow for more performant application designs,
which is particularly beneficial for resource-constrained targets.

Again, the programmer may choose what kind of macro-defined language
(if any) to use in support of more “static” designs. Examples of potentially
useful language include: static-cond; Magnolia-style static component lan-
guage; C++ style constexpr definitions, for constant expressions to evaluate
at compile time; or domain-specific sub-languages whose expressions might
evaluate partially, which may also lead to more accurate static analysis [Her-
man and Meunier} 2004].

Self-extension A language with macros is self-extensible, and I consider
this to be an important (if not essential) characteristic in the context of niche
platform PLE. Some of the benefits include:

141n Racket, a “line comment” begins with a semicolon, and continues until the end of the line.

23

1. INTRODUCTION

e Self-extensibility allows delegating language engineering work from the
production tools developer to the domain programmer.

e Voelter and Visser|[2011] point out that it is good to allow language to
be defined incrementally and iteratively, with user validation after each
iteration, and delegating language engineering work to the user (the
domain programmer) encourages such iterative development.

o A self-extension facility enables localized syntactic abstraction. Racket
macros’ templates can even close over bindings in a local context, which
for example makes it possible for a macro use to implicitly operate on
certain local variables.

1.5 Product-Line Development Kits

One of my principles for assembling a cross-niche-platform “development
kit” for a product line is to combine adaptable, target-platform-agnostic tool-
ing with platform-vendor-provided tooling. This combination is appropriate
as there may not be any third-party-provided, platform-specific tools in a niche
setting. The principle calls for flexibility from the target-agnostic tool infras-
tructure, so that it can be made to interface with the appropriate vendor tools.

A comprehensive set of tooling includes things such as: a (deployable)
programming language, assisted editing and code navigation support, simu-
lated and on-target testing and debugging support, etc. Mainstream software
developers in particular have come to expect such features, creating pres-
sure for platform vendors to provide them. For each programmable platform
we might minimally expect to be provided with at least one programming
language, an application programming interface (API), and on-device deploy-
ment support. For the rest of a comprehensive product-line development kit,
any common tooling would ideally be self-sufficient; in the case of this disser-
tation, that tooling revolves around a mouldable programming language and
its language environment.

It would be burdensome for a small independent software vendor to create
both a language (possibly in multiple different flavors) and its development
environment from scratch. One way to avoid that is to use a language work-
bench such as Spoofax [Kats and Visser, [2010], JetBrains MP or XtextE] in
defining the language, as the same definitions then work as a basis for IDE
support.

Charles et al.| [2009] suggest that language-specification-derived support
may not be flexible enough for IDE experiences that fully reflect distinctive
language characteristics; Magnolia takes a slightly lower level approach, and
instead bases its Eclipse IDE integration on the IMP framework [Charles et al.,
2009], which provides building blocks for standard services such as syntax
highlighting, hover help, and outline view [Bagge| 2013].

Magnolisp adopts yet another approach in that it arranges for direct reuse
of another language’s tooling, through language embedding into Racket. This
means that it may not be necessary to implement any supporting tools for
the language at all, if one is willing to live without a language-optimized

15https 1/ /www. jetbrains. com/mps/
16http 1/ /www.xtext.org/

24

https://www.jetbrains.com/mps/
http://www.xtext.org/

1.6. Target Languages, APIs, and Systems

development experience. One advantage of the embedding approach is the
availability of editing services that—unlike those produced by established
language workbenches—can cope with self-extensible languages; a caveat is
that it is harder to implement satisfactory refactorings for such languages,
if their results should be resugared [Pombrio and Krishnamurthi} [2015] for
readability. Further benefits of language embedding into Racket are discussed
in section 2.5
Existing Racket code editing facilities tend to work fine for Magnolisp.

For instance, racket—mod for the Emacs text editor supports Magnolisp
code navigation, auto-completion, and documentation lookup, without any
Magnolisp-specific configuration, while the DrRacket IDE [Findler et al.,2002]
is able to visualize Magnolisp binding structure:

5| (typedef Imt_#:: (foreign))

6

7 | (declare (addl x)

8) | #:: (foreign [type (-> Ent Int)]))

Racket’s Scribble [Flatt et al.,[2009] language and compiler can be used for
typesetting and rendering documentation for Magnolisp APIs. Racket’s raco
make tool can be used as a build manager for Magnolisp bytecode, to speed up
further compilation to C++; this should be particularly beneficial for relatively
stable libraries that are common dependencies.

DrRacket’s macro debugger can be used to debug Magnolisp macros, since
the macro system is Racket’s. Magnolisp supports APl mocking and execution
“simulation” within the Racket VM, and thus some testing and debugging of
code is possible without going via C++; this can also be done in a Magnolisp
REPL (i.e., an interactive console), as launchable via the racket executable. For
testing cross-compiled code on the target, it is necessary to rely on vendor tools,
which often include support for target platform emulation on the workstation,
or on-target debugging through a target device connection. Axiom-based
testing can also be seen as a form of debugging support as it can help pinpoint
errors for fixing, without running an application as such, but rather unit testing
its code via a test harness to find operations to blame for breaking asserted
invariants.

1.6 Target Languages, APIs, and Systems

In this section I briefly discuss some recent and current niche smartphone
operating systems and cross-platform development technologies.

When considering available smartphone platform developer offerings, one
may notice that large vendors tend to favor their own proprietary frameworks
(e.g., Cocoa Touch and .NET Compact Framework), and even maintain their
own languages (like Swift or C#) and associated tools. This may be because
large vendors can afford to fund the development of such technology, and be-
cause platform-specific technologies help achieve a degree of vendor lock-in.
Niche platforms seem to be more commonly built in terms of languages and
libraries that competing vendors are also using (C++ and Qt, for example).
Thus, even if niche platform tools do not receive as much investment or atten-

Vhttps://github.com/greghendershott/racket-mode (2016)

25

https://github.com/greghendershott/racket-mode

1. INTRODUCTION

tion as their mainstream counterparts, there may be more native code reuse
opportunities across them.

1.6.1 Niche Smartphone Operating Systems

I define smartphone as a mobile phone that allows for third-party development
and installation of applications that run natively, i.e., in the same execution
environment as the platform’s built-in applications and services generally do.
In this section I discuss some smartphone operating systems from the point of
view of a native application developer; section [4.2|adds to the discussion by
comparing the permission-based security models of a number of smartphone
systems.

Overall, most (if not all) smartphones today support C and C++ for de-
velopment, perhaps in part because many games developers insist on them.
C++ support is sometimes incomplete, however; the full standard library may
not be available, for example, or the run-time library may lack support for
some language features. OpenGL ES is also almost ubiquitous, and likewise
widely used in games and other graphics-intensive applications. Other near
ubiquitous libraries include SQLite (for databases) and zlib (for data compres-
sion). A smartphone SDK commonly includes a version of GCC or Clang (or
sometimes both) as a cross-compiler, possibly with some customizations (e.g.,
for binary compatibility). It is particularly common for an SDK to include an
Eclipse or Qt Creator based IDE, or a plugin for the Microsoft Visual Studio
IDE.

BlackBerry 10 (BB10) is a smartphone OS based on the QNX real-time,
microkernel-based OS. While QNX, like Linux, is POSIX compliant, there
nonetheless are differences that may hamper portability. As of version 10.0.9,
the BB10 native SDK includes: the C and C++ standard libraries, OpenGL ES,
EGL, SQLite, cURL, and Qt, in addition to platform-specific APIs; QCC as a
GCC-based compiler for targeting a QNX-based system; QNX Momentics as
a standalone Eclipse-based IDE; and a plugin for the Microsoft Visual Studio
IDE.

Tizeﬁ (as of version 2.4) is an operating system with a Linux kernel,
and RPM as its package manager; it has shipped on smartphones and other
consumer devices. The Tizen SDK includes an Eclipse-based IDE, and both
GCC and LLVM based toolchains for compilation. Tizen’s selection of cross-
platform libraries includes: the C and C++ standard libraries, OpenGL ES,
OpenMP, SQLite, libxml, and zlib.

Sailfish O (as of version 2.0) is a mobile OS based on Mer, a mobile-
optimized “core Linux” distribution using RPM for package management; Qt
is supported as an API, and the SDK uses Qt Creator as its IDE, and VirtualBox
for Sailfish emulation on a workstation.

MeeGo Harmattan (or just Harmattan) is a smartphone OS derived from the
Maemo operating system, which in turn is based on Debian, and thus uses
dpkg as its package manager. Unlike earlier Maemo releases, Harmattan has a
Qt-based Ul in addition to Qt, the platform includes the standard C and C++
libraries, OpenGL ES, GLib, GStreamer, and PulseAudio. A Qt-based SDK

18https ://www.tizen.org/
19https ://sailfishos.org/

26

https://www.tizen.org/
https://sailfishos.org/

1.6. Target Languages, APIs, and Systems

was the primary application developer offering, including Qt Creator as the
IDE. There was also a separate Harmattan Platform SDK for (direct) access to
underlying platform functionality; it did not include an IDE.

Symbian OS is written in C++ from the kernel up, and—like the QNX-
based BB10—it is also a rare example of a smartphone OS with a microkernel
architecture [Sales} 2005]. During Symbian’s history the SDK offerings varied,
but most recently there were both Eclipse and Qt Creator centric SDKs, and
APIsupportincluded the C and C++ standard libraries, OpenGL ES, OpenVG,
EGL, Boost, SQLite, and Qt.

Symbian is a peculiar smartphone OS in that it was widely used by con-
sumers but disliked by developers, perhaps due to being so unlike other
systems. [Kantee and Vuolteenaho|[2006] found that—compared to UNIX and
Windows—Symbian is a “completely different kind of system,” and that as-
sumptions which hold in other environments may no longer be valid. Symbian
originates from a time of modest hardware specifications and C++ before its
standardization. Consequently, it goes to great lengths to be resource frugal,
mostly at the developers’ expense, and its programming idioms can seem
weird; the weirdnesses of the “Symbian C++" dialect have been summarized
by [Pagonis| [2007]. I give examples of Symbian idioms in briefly describing a
Symbian-specialized programming language in section

1.6.2 Cross-Platform Application Frameworks

Niche platforms may be more likely to ship with more widely used application
frameworks than their mainstream competition, but this reuse benefit is offset
by there being more third-party cross-platform abstraction layer offerings for
mainstream ecosystems (e.g., React Nativ 0.20 only supports Android and
iOS targets).

While such abstraction layers open up significant opportunities for code
reuse across platforms, they also have their own drawbacks:

e They tend to be costly to maintain (depending on their implementation
strategy), and may drop support for a platform with little notice, or
even get discontinued altogether; this risk should naturally be weighed
against the risk of the underlying platforms themselves getting discon-
tinued, or having their native frameworks replaced by something else.

e A framework that attempts to abstract over various platform aspects
may easily fall far behind an evolving platform in what portion of the
underlying functionality it manages to cover.

e A platform-abstraction layer may be large, with its use resulting in run-
time overhead that harms the user experience (e.g., by noticeably in-
creasing application launch times).

o A framework may have a prohibitively large footprint for bundling with
every small application, and in that case it perhaps cannot be used unless
the target platform has it built-in, or has a facility for shared installation
(e.g., a package manager).

20https ://facebook.github.io/react-native/

27

https://facebook.github.io/react-native/

1. INTRODUCTION

e A target platform vendor might even impose contractual obligations
prohibiting the use of certain kinds of third-party frameworks in their
sales channels.

o A cross-platform framework’s Ul widgets might not look and feel quite
the same as the underlying platform’s (which may not always be con-
sidered a drawback).

One may try to judge a framework’s potential longevity based on its imple-
mentation strategy. Cross-platform frameworks that build on widely available
APIs and limit exposure to proprietary APIs should be less costly to maintain,
and thus more likely to survive for longer periods of time. Perhaps the most
prominent example of an API that has become nearly ubiquitous in modern
PCs and smartphones is OpenGL (or OpenGL ES) for graphics rendering. Qt
5.0’s core GUImodule (i.e., “Qt GUI"”) requires OpenGL, for example, while the
popular Unit game engine uses OpenGL for some of its target platform

Web technologies are another proven substrate for cross-platform appli-
cation implementation. One strategy for exploiting them is to embed a web
view for rendering Uls (using any available API for such embedding), and
to expose a selection of platform services to any JavaScript, HTML, and CSS
code that runs within the view. Apache Cordov (formerly PhoneGap) is a
widely used application framework that employs this strategy, and over time
it has supported an unusually large variety of niche platforms such as bada,
BB10, Firefox OS, Tizen, Ubuntu Touch, and webOS. This support attests to
the portability of this approach, but a large part of the value of Cordova is in
its ecosystem of “plugins” that provide access to platform functionality.

A flexible cross-niche-platform product-line strategy is not to rely on the
availability of cross-platform frameworks or rich supporting ecosystems, but
to interface or incorporate such technology where that is advantageous. In
general, one can probably get the most out of a platform with the least overhead
and deployment difficulty by using platform-native APIs directly, but that may
not always be the most cost-effective option. Fortunately, in some cases, one
can get both native and cross-platform at once, as there are niche platforms
that adopt a cross-platform framework as their native application framework.

The long-lived Q application framework in particular has been well
represented on niche platforms. BB10, Harmattan, Sailfish, Sharp Zaurus,
and Ubuntu Touch, for example, are (or were) natively based on Qt, while
later versions of S60 also included and made some use of Qt in their UI and
applications. Qt 5.5 is also installable on Android, iOS, and Windows Phone,
among others, even though none of those platforms have Qt APIs built-in. Qt’s
wide cross-platform support—which includes major desktop OSes—makes it
sort of a “meta” platform that has a larger developer community than many
of its host systems.

As of version 5.5, Qtis C++ based, and exceptional in being comprehensive
enough to host entire applications; depending on an application’s function-
ality, it may not require direct access to any underlying operating system

Zlhttp: //unity3d.com/ (2016)

22Unity 5.3.3s supported smartphone targets include Android, iOS, Windows Phone, and
Tizen. BB10 was supported by Unity versions 4.2-5.1.4.

Bhttp://cordova.apache.org/ (2016)

24http://www.qt.io/

28

http://unity3d.com/
http://cordova.apache.org/
http://www.qt.io/

1.6. Target Languages, APIs, and Systems

APIs. The resulting portability of Qt-based software is valuable, also enabling
Qt-based software targeted for smartphones to be at least partially tested on
workstations.

Idiomatic Qt C++ code is object-oriented and stylistically similar to Java.
Exceptions and RTTI (run-time type information) are not used, and there is no
extensive use of C++ templates [Qt Wiki| [2016].

Qt extends C++ through the use of the moc tool, adding support for object
introspection, among other things. The Qt object model is reliant on moc-
generated code, and this introduces some complications, particularly to code
organization and build management. Firstly, in a mixed Qt/non-Qt codebase,
one will probably want to invoke moc on Qt APIs only, requiring some book-
keeping about which files to moc. Secondly, one typically ends up with a
larger number of header files than normally in C++, in arranging for moc to
be invoked also on private Qt APIs. Thirdly, to avoid errors in moccing one
must be mindful of any interactions with the C++ preprocessor, particularly
with codebases that have optional, compile-time configurable features (moc’s
support for preprocessing varies depending on the Qt version).

A transcompiled programming language targeting C++ can avoid any
problems related to invoking moc by generating code that already includes the
definitions that moc would generate. I briefly describe such a Qt-specialized
language in section[6.9.2]

1.6.3 C++ as a Niche Platform Lingua Franca

C++ plays a special role as our primary transcompilation target language, with
Magnolia, Magnolisp, and Erda all having a C++ back end. For a language like
Magnolia, supporting parameterized programming [Goguen,(1984], C++ is an
attractive target due to its parameterizability: as the C++ template mechanism
enables compile-time parameterization of code, it becomes possible to do
component composition after source-to-target language translation. I discuss
that further in section[6.4.1, which concerns interfacing with foreign languages
from a component-system-equipped language.

In this dissertation, a specific attraction of C++ is its wide reach over
niche smartphone platforms. While C is still quite entrenched as a language of
choice in embedded software development [Voelter et al.,2015], C++ presently
strikes a good balance between smartphone platform toolchain support and
its compatibility with APIs, since both C and C++ APIs are directly accessible
from C++. Some smartphone platform APIs (e.g., bada and Symbian) are also
natively C++. A C++ code asset that builds on top of a popular API such as
the C++ Standard Library or Qt should be usable across a number of potential
target platforms, which is valuable from a domain-engineering point of view.

Targeting the common subset of C and C++ would give even better plat-
form coverage; the Lua 5.0 VM, for example, is highly portable due to being
implemented in that subset [lerusalimschy et al., [2005]. Transcompilation
permits us to generate idiomatic C++, however, without costing us the pos-
sibility to add support for additional target languages (e.g., C or Objective-C)
as necessary for toolchain or API compatibility.

By adopting a transcompilation-based portability strategy, any C++ back
end may liberally exploit the richness of its target language for readability
and type safety, for example, as I imply in section [6.9.1 by discussing a more

29

1. INTRODUCTION

C++-oriented variant of Magnolisp. As I further suggest in sections [6.9.2]
and [6.9.3]by considering additional variants of that language, one could even
support targeting of different idiomatic styles of C++. Such support might be
beneficial for portability or API use convenience, as C++ is a large “multi-
paradigm” language arguably lacking a de-facto coding standard. Each C++
sub-community (bada, Boost, Qt, Symbian, etc.) uses its own language subset
with its own stylistic conventions.

The kind of C++ that one is expected to use depends not only on conven-
tions, but also the language version, and any vendor-specific deviations from
the specification. If a platform’s toolchain lacks support for a C++ feature,
then it can of course not be used when targeting that platform, with transcom-
pilation or otherwise. For example, C++ RTTI did not become available on
Symbian OS before version 9, and no version of bada supports C++ excep-
tions. Exceptions, multiple inheritance, and templates are among the features
commonly missing from C++ compilers for embedded systems [White} 2011].

Non-standard language extensions may also be a source of incompati-
bilities, and both Clang and GCC, for instance, have a number of them for
C++. Such extensions may also originate from platform vendors; for exam-
ple, Apple’s OS X v10.6 Xcode developer tools (which can also build for iOS)
introduced a form of closures called “Blocks” [Garst, 2009], allowing them to
be used in C, C++, and Objective-C.

1.7 A Niche Platform Software Production Strategy

“Now the general who wins a battle makes many
calculations in his temple ere the battle is fought.”

Sun Tzu, as translated by Lionel Giles

This dissertation’s high-level strategy for constructing and running a niche-
platform-compatible software product line is characterized by these key design
choices:

e Core asset management: Manage software components, target-specific
build information, and program configurations in an open-world and
tool-assisted manner.

e Production tooling: Have tooling complement and integrate with a pro-
gramming language family sharing a common style and development
environment. Accommodate target-platform-specific tools, but avoid
depending on them.

e Program composition: Have at least one of the language family mem-
bers include a component system supporting parameterizable compo-
nents, and separate abstract “concepts” that may specify both syntax and
semantics (as signatures and algebraic laws) to constrain composition.
Have the language possess a static reasoning and translation friendly
algorithmic language, to support configuration-fact inference and cross-
platform targeting. Potentially have this platform-agnostic composition
language include syntax to support any coding conventions for dealing
with cross-cutting concerns (such as error and event handling).

30

1.8. Outline

¢ Language engineering: Include a language-family-wide mechanism for
language extension, to serve as common ground for implementing and
evolving the family, and specializing languages for different purposes
(e.g., domain-conceptual expression or tools integration). Have exten-
sions be modular, thus also turning them into manageable and reusable
assets. Ideally support language self-extension, and allow extensions to
be composable and scoped, to support safer pervasive use of syntactic
abstraction and piecemeal co-evolution of language and code. Build lan-
guages as towers on top of a small core, for maintainability, but do allow
inherently different languages to have different cores.

e Programming: Program business logic portably, against concepts as
platform abstractions. Implement components natively in terms of target
frameworks and libraries, in languages that specialize in interfacing with
target APIs directly.

e Deployment: Source-to-source compile programs into target-native lan-
guages for further building and deployment with platform-specific tools.
Compile to human-readable source code to facilitate debugging.

1.8 Outline

I now present an overview of the remaining chapters of this dissertation. For
the chapters that are not solely authored by me, I will indicate what part of the
contribution is mine:

o Chapter [2| describes a technique for infrastructure reuse for a compiler
front end. The technique concerns exploiting Racket’s language defi-
nition machinery to enable separate source-to-source compilation of the
implemented languages, with various potential infrastructure reuse ben-
efits for the source language. The chapter is a full-length version of a
published paper co-authored by Matthew Flatt, whose technical exper-
tise was essential in discovering the technique, and particularly its use
of “submodules,” which were new at the time. The rough idea for the
paper was mine. I implemented the Magnolisp programming language,
in part for purposes of validating the presented technique.

e Chapter[|describes a scheme for implementing program transformation
infrastructure with compiler “middle ends” and intermediate program
representations in mind. More specifically, the scheme is for macro-
based, language-integrated abstract syntax tree API generation, with
some unconventional support for defining abstractions over related ab-
stract syntax. The chapter is an unpublished paper co-authored by my
co-supervisor Anya Helene Bagge. I am the main author, and the idea
was mine. I created the Illusyn program transformation library, which
includes an abstract syntax API generator implemented according to the
described scheme.

e Chapterfddescribes an application of language technology to the domain
of permission-based security models. It explains how one might keep
track of applications” permission requirements in a cross-platform set-
ting, by exploiting a programming language that is both equipped with
a component system, and designed to allow accurate static reasoning.

31

1. INTRODUCTION

32

The chapter is a published paper that I co-authored with Anya Helene
Bagge and my supervisor Magne Haveraaen. I am the main author,
and the original idea was mine. Designing the syntax and semantics of
permission declarations for the Magnolia programming language was
a joint effort. Permission declaration and inference support was imple-
mented for Magnolia by Anya. I implemented the original version of the
Anyxporter example application, while Anya adapted it for Magnolia.

Chapter [5| discusses another application of language technology. It
presents a convention for failure management that is suitable for a cross-
platform setting, as it can be realized in highly portable code. The
chapter also presents language support for the convention, featuring
semi-automated reporting, handling, and propagation of errors, as well
as a facility for adapting to other conventions. The chapter is a longer
and differently-themed version of a soon-to-be published paper that I co-
authored with Magne Haveraaen. I am the main author, and worked out
many of the semantic details of the language constructs, building on ear-
lier work by the group on syntax and semantics of “alerts” [Bagge et al.|
2006]. The original idea for how to represent errors was Magne’s, as was
the formulation of the relationship to the underlying theory of guarded
algebras [Haveraaen and Wagner| 2000]. I created the Erda family of pro-
gramming languages, which include built-in error-handling support, as
described.

Chapterff|sketches a design for using the prior chapters’ technologies and
language features as part of a larger niche-platform-friendly product-line
setup for developing software product families. Unlike the solutions of
the earlier chapters, the overall solution sketched here has not been
validated through implementation.

Chapter[7provides additional context for this dissertation by discussing
some of the benefits, drawbacks, and uncertainties that I perceive in my
software production tooling strategy. The chapter also discusses related
work with respect to that strategy.

e Chapter|8]is the conclusion.

CHAPTER

Adopting a Macro System

If we want our programming language to be translatable into multiple vendor-
supported languages, we can make the translation work easier by avoiding
sophisticated features that lack counterparts in the target languages. We might
instead have sophisticated language facilities for syntactic abstraction, which
can then be used to translate abstract code into some fairly primitive language
that is easy to translate further.

Macros are a classic language facility for enabling programmers to de-
fine custom syntactic abstractions. For pervasive abstraction in large-scale
software, it is perhaps best to support programmable, module-system-aware
hygienic macros, for purposes of expressiveness, safer composition, and more
modular (and reusable) organization. Macro systems with all of those charac-
teristics can be complex, and our primitive, transcompiled language may not
be the best basis for macro programming.

In this chapter we describe one way to reuse an existing language’s macro
system for a language of our own, by embedding our language within that
existing host language.

By designing our language to incorporate an existing macro system and
macro language and its libraries, we gain extensibility for our source language,
with the extensions expressible in a language that is free of any target language
constraints. Furthermore, we will be able to benefit from existing languages’
ecosystems and tools both at the source-language side (e.g., for documenting,
editing, and extending) and at the target-language side (e.g., for building,
deploying, and testing).

I presented an early version of this paper at IFL 2014 in Boston [Hasu and
Flatt,[2014], and a condensed version at ELS 2016 in Krakéw [Hasu and Flatt,
2016)].

33

2. ADOPTING A MACRO SYSTEM

34

Source-to-Source Compilation via Submodules

Tero Hasu MartHEw FLATT
BLDL aAND PLT AnND
UNIVERSITY OF BERGEN UN1vVERSITY OF UTAH

Abstract

Racket’s macro system enables language extension and definition primar-

ily for programs that are run on the Racket virtual machine, but macro
facilities are also useful for implementing languages and compilers that
target different platforms. Even when the core of a new language differs
significantly from Racket’s core, macros offer a maintainable approach to
implementing a larger language by desugaring into the core. Users of
the language gain the benefits of Racket’s programming environment, its
build management, and even its macro support (if macros are exposed
to programmers of the new language), while Racket’s syntax objects and
submodules provide convenient mechanisms for recording and extract-
ing program information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs within
Racket for testing purposes, but that compiles to C++ (with no dependency
on Racket) for deployment.

2.1 Introduction

A macro expander supports the extension of a programming language by trans-
lating extensions into a predefined core language. A source-to-source compiler
(or transcompiler for short) is similar, in that it takes source code in one language
and produces source code for another language. Since both macro expansion
and source-to-source compilation entail translation between languages, and
since individual translation steps can often be conveniently specified as macro
transformations, a macro-enabled language can provide a convenient platform
for implementing a transcompiler.

Racket’s macro system, in particular, not only supports language
extension—where the existing base language is enriched with new syn-
tactic forms—but also language definition—where a completely new language
isimplemented though macros while hiding or adapting the syntactic forms of
the base language. The Racket macro system is thus suitable for implementing
a language with a different or constrained execution model relative to the core
Racket language.

© 20142016 Tero Hasu and Matthew Flatt.

35

2. ADOPTING A MACRO SYSTEM

Magnolisp is a Racket-based language that targets embedded devices. Rel-
ative to Racket, Magnolisp is constrained in ways that make it more suitable
for platforms with limited memory and processors. For deployment, the Mag-
nolisp compiler transcompiles a core language to C++. For development,
since cross-compilation and testing on embedded devices can be particularly
time consuming (compilation times generally pale in comparison to the time
used to transfer, install, and launch a program), Magnolisp programs also run
directly on the Racket virtual machine (VM) using libraries that simulate the
target environment.

Racket-based languages normally target only the Racket VM, where macros
expand to a core Racket language, core Racket is compiled into bytecode form,
and then the bytecode form is run:

Racket-based | macroexpand
language core Racket
compile l
run
Racket VM bytecode

To instead transcompile a Racket-based language, Magnolisp could access
the representation of a program after it has been macro-expanded to its core
(via the read and expand functions). Fully expanding the program, however,
would produce Racket’s core language, instead of Magnolisp’s core language.
External expansion would also miss out on some strengths of the Racket envi-
ronment, including automatic management of build dependencies.
Magnolisp demonstrates an alternative approach that takes full advantage
of Racket mechanisms to assemble a “transcompile time” view of the program.
The macros that implement Magnolisp arrange for a representation of the
core program to be preserved in the Racket bytecode form of modules. That
representation can be extracted as input to the mglc compiler to C++:

macroexpand
Magnolisp core Racket. _._|
compile l
run
Racket VM ___ bytecode
mglc v
C++

In this picture, the smaller boxes correspond to a core-form reconstruction that
is only run in transcompile-time mode (as depicted by the longer arrow of the
“run” step). The boxes are implemented as submodules [Flatt,[2013]], and the
core form is extracted by running the submodules instead of the main program
modules.

By compiling a source program to one that constructs an AST for use by
another compiler layer, our approach for Magnolisp in Racket is similar to
lightweight modular staging in Scala [Rompf and Odersky, 2010] or strate-
gies that exploit type classes in Haskell [Chakravarty et al., 2011]. Magnolisp
demonstrates how macros can achieve the same effect, but with the advantages

36

2.2. Magnolisp

of macros and submodules over type-directed overloading: more flexibility in
defining the language syntax, support for static checking that is more precisely
tailored to the language, and direct support for managing different instantia-
tions of a program (i.e., direct evaluation versus transcompilation).

2.2 Magnolisp

Magnolisis statically typed, and all data types and function invocations are
resolvable to specific implementations at compile time. Static typing for Mag-
nolisp programs facilitates compilation to efficient C++, as the static types can
be mapped directly to their C++ counterparts. To reduce syntactic clutter from
annotations and to help retain untyped Racket’s “look and feel,” Magnolisp
supports type inference a la Hindley-Milner.

Magnolisp’s surface syntax is similar to Racket’s syntax for common con-
structs, but it also has language-specific constructs, including ones that do not
directly map into Racket core language (e.g., 1f-cxx for conditional transcom-
pilation). Magnolisp uses Racket’s module system for managing bindings,
both for run-time functions and for macros. An exported C++ interface is
defined separately through export annotations on function definitions; only
exported functions are declared in the generated C++ header file.

A Magnolisp module starts with #lang magnolisp. The module’s top-
level can define functions, types, and so on. A function marked as foreign
is assumed to be implemented in C++; it may also have a Racket implemen-
tation, given as the body expression, to allow it to be run in the Racket VM.
Types defined in C++ are also foreign, and typedef can be used to give
the corresponding Magnolisp declarations. The type annotation is used to
specify types for functions and variables, and type expressions can refer to
typedef-bound type names. The #:: keyword is used to specify a set of
annotations for a definition. A shorthand macro supports the declaration of
multiple primitives in terms of foreign, #: :, and so on.

In the following example, get-last-known-location is a Magnolisp func-
tion of type (-> Loc), i.e., a function that returns a value of type Loc. The
(rkt.get-last-known-location) expression in the function body could be
a call to a Racket function from module "positioning.rkt" to simulate
position-information retrieval:

#lang magnolisp
(require (prefix-in rkt. "positioning.rkt™))

(typedef Loc #:: (foreign))

(define (get-last-known-location)
#:: (foreign [type (-> Loc)])
(rkt.get-last-known-location))

No C++ code is generated for the above definitions, as they are both declared
as foreign. For an example with a C++ translation, consider this code, which
uses Magnolisp’s Racket-style let and if expressions:

1Documentation: https://bldl.ii.uib.no/software/pltnp/magnolisp.html

37

https://bldl.ii.uib.no/software/pltnp/magnolisp.html

2. ADOPTING A MACRO SYSTEM

#lang magnolisp
(require magnolisp/std/list)

; element primitives (defined in C++)
(typedef Int #:: ([foreign int]))
(define (add x y)

#:: (foreign [type (-> Int Int Int)]))

; sum of first two list elements (or fewer for shorter lists)
(define (sum-2 1st) #:: (export)
(if (empty? 1st)
0
(let ([t (tail 1st)])
(if (empty? t)
(head 1st)
(add (head 1st) Chead t))))))

The transcompiler-generated C++ implementation for the sum-2 function is
the following (apart from minor reformatting):

MGL_API_FUNC int sum_2(List<int> const& 1lst) {
List<int> t;
return is_empty(lst) ?
0 :
((t = tail(dst)),
(is_empty(t) ? head(lst) :
add(head(1st), head(t))));
}

We could exploit macros in defining functions like sum-2. We do so with
the following left-folding mfold macro, which performs macro-expansion-
time unrolling of recursion. This time the let and if forms appear within a
code-generation template:

; uses op to combine at most n first elements of 1st
; (resultis init for an empty list)
(define-syntax (mfold stx)
(syntax-case stx ()
[(_ op init 1lst n)
(let ([i (syntax-e #'n)])
Af (=1 ®
#'init
(let ([tmp 1st])
(if (empty? tmp)
init
(op (head tmp)
(mfold op init (tail tmp)
#,(subl 1)))))))1))

(define (sum-2/2 1st) #:: (export)
(mfold add 0 1st 2))

38

2.3. Hosting a Transcompiled Language in Racket

whose sum-2/2 function gets translated by mglc as

MGL_API_FUNC int sum_2_2(List<int> const& lst) {
List<int> tmp;
return is_empty(lst) ?
0 :
add(head(1st),
((tmp = tail(lst)),
(is_empty(tmp) ? 0 : addChead(tmp), 0))));
}

Figure shows an overview of the Magnolisp architecture, including
both the magnolisp-defined front end and the mglc-driven middle and back
ends. Figure illustrates the forms of data that flow through the com-
pilation pipeline. Transcompilation triggers running of "a.rkt" module’s
transcompile-time code, through magnolisp-s2s submodule’s instantiation
by invoking dynamic-require to fetch values for certain variables (e.g., def-
1st); the values describe the code of "a.rkt", and are already in the com-
piler’s internal data format. Any referenced dependencies of "a.rkt" (e.g.,
"num-types.rkt", as indicated by int’s binding information) are processed
in the same manner, and the relevant definitions are incorporated into the
compilation result (i.e., "a.cpp" and "a.hpp").

The middle and back ends are accessed either via the mglc command-line
tool or via the underlying API as a Racket module. In either case, the expected
input is a set of modules for transcompilation into C++. The compiler loads
any transcompile-time code in the modules and their dependencies. Any
module with a magnolisp-s2s submodule is assumed to be Magnolisp, but
other Racket-based languages may also be used for macro programming or
simulation. The Magnolisp compiler effectively ignores any code that is not
run-time code in a Magnolisp module.

The program transformations performed by the compiler are generally
expressed with term-rewriting strategies. These strategies are implemented
by a custom combinator libraryE] that is inspired by Stratego [Bravenboer et al.,
2008]. Syntax trees that are prepared for the transcompilation phase instantiate
data types that support the primitive strategy combinators of the combinator
library.

The compiler middle end implements whole-program optimization (by
dropping unused definitions), type inference, and some simplifications (e.g.,
removal of condition checks where the condition is constant). The back end
implements translation from Magnolisp core to C++ syntax (involving, e.g.,
lambda lifting), copy propagation, C++-compatible identifier renaming, split-
ting of code into sections (e.g.: public declarations, private declarations, and
private implementations), and pretty printing.

2.3 Hosting a Transcompiled Language in Racket

Magnolisp is an example of a general strategy for building a transcompiled
language within Racket. In this section, we describe some details of that pro-
cess for an arbitrary transcompiled language L. Where the distinction matters,

2https ://bldl.ii.uib.no/software/pltnp/illusyn.html

39

https://bldl.ii.uib.no/software/pltnp/illusyn.html

2. ADOPTING A MACRO SYSTEM

a.rkt mglc
(Magnolisp
source) (CLI tool)
inputOf ‘r'invokes",
front end - ’ :
middle end
macro middle-end
API
expander
N .
N .
efersTo \\expandsTo invokes(invokes outputs invokes
‘o .
.rkt
Magnolisp a(c;re module analyses &
libraries Racket) loader optimizations

’

.
contains ,’evaluates
,

, back end

a.rkt
magnolisp-s2s
submodule

C++
back-end
driver

Figure 2.1: The overall architecture of the Magnolisp implementation, show-
ing some of the components involved in compiling a Magnolisp source file
"a.rkt" into a C++ implementation file "a.cpp” and a C++ header file
"a.hpp". The dotted arrows indicate that the use of the mglc command-line
tool is optional; the middle and back end APIs may also be invoked by other
programs. The dashed “evaluates” arrow indicates a conditional connection
between the left and right hand sides of the diagram; the magnolisp-s2s sub-
module is only loaded when transcompiling. The “expandsTo” connection is
likewise conditional, as "a.rkt" may have been compiled to bytecode ahead
of time, in which case the module is already available in a macro-expanded
form; otherwise it is compiled on demand by Racket.

40

2.3. Hosting a Transcompiled Language in Racket

o] IR D
a.rkt
#lang magnolisp Cpetvar>
(require "num-types.rkt") def-1st
(define (int-id x) Gnnos>) CLanbda>
#:: ([type (-> int int)] export) run
X) ... int-id
ﬁ&xt (core) lmacroexpand
(module a magnolisp/main ¢ translate
(#%module-begin ﬁ
- CPP.

(module magnolisp-s2s racket/base
(#%module-begin
(define-values (def-1st)
(#%app list (#%app Defvar))) }
..))

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
return x;

6000 a.hpp
(#%require "num-types.rkt") #include "a_config.hpp"
(define-values (int-id)))) MGL_API_PROTO int int_id(int const& Xx);

Figure 2.2: Subset of Figure showing file content: a Magnolisp module
passing through the compilation pipeline.

we use Ly to denote a language that is intended to also run in the Racket VM
(possibly with mock implementations of some primitives), and L to denote a
language that only runs through compilation into a different language.
Building a language in Racket means defining a module or set of modules to
implement the language. The language’s modules define and export macros
to compile the language’s syntactic forms to core forms. In our strategy,
furthermore, the expansion of the language’s syntactic forms produces nested
submodules to separate code than can be run directly in the Racket VM from
information that is used to continue compilation to a different target.

2.3.1 Modules and #lang

All Racket code resides within some module, and each module starts with
a declaration of its language. A module’s language declaration has the form
#lang L asthe firstline of the module. The remainder of the module can access
only the syntactic forms and other bindings made available by the language
L.

A language is itself implemented as a moduleE] A language module is
connected to the name L—so that it will be used by #lang L—by putting the
module in a particular place in the filesystem or by appropriately registering
the module’s parent directory. In general, a language’s module provides a
reader that gets complete control over the module’s text after the #1ang line. A
reader produces a syntax object, which is a kind of S-expression (that combines
lists, symbols, etc.) that is enriched with source locations and other lexical
context. We restrict our attention here to using the default reader, which
parses module content directly as S-expressions, adding source locations and
an initially empty lexical context.

3Some language must be predefined, of course. For practical purposes, assume that the
racket module is predefined.

41

2. ADOPTING A MACRO SYSTEM

For example, to start the implementation of L such that it uses the default
reader, we might create a "main.rkt" module in an "L" directory, and add a
reader submodule that points back to L/main as implementing the rest of L:

#lang racket
(module reader syntax/module-reader L/main)

The S-expression produced by a language’s reader serves as input to the
macro-expansion phase. A language’s module provides syntactic forms and
other bindings for use in the expansion phase by exporting macros and vari-
ables. A language L can re-export all of the bindings of some other language,
in which case L acts as an extension of that language, or it can export an arbi-
trarily restrictive set of bindings. For example, if "main.rkt" re-exports all of
racket, then #lang L is just the same as #lang racket:

#lang racket
(module reader syntax/module-reader L/main)
(provide (all-from-out racket))

A language must at least export a macro named #%module-begin, because
that form implicitly wraps the body of a module. Most languages simply use
#%module-begin from racket, which treats the module body as a sequence of
require importing forms, provide exporting forms, definitions, expressions,
and nested submodules, where a macro use in the module body can expand
to any of the expected forms. A language might restrict the body of mod-
ules by either providing an alternative #%module-begin or by withholding
other forms. A language might also provide a #%module-begin that explicitly
expands all forms within the module body, and then applies constraints or
collects information in terms of the core forms of the language.

As an example, the following "main.rkt" re-exports all of racket except
require (and the related core language name #%require), which means that
modules in the language L cannot import other modules. It also supplies an
alternate #%module-begin macro to pre-process the module body in some way:

#lang racket
(module reader syntax/module-reader L/main)
(provide
(except-out (all-from-out racket)
require #Xrequire #¥module-begin)
(rename-out [L-module-begin #%module-begin]))
(define-syntax L-module-begin)

For transcompilation, the #%module-begin macro plays a key role in our
strategy. A Racket language L that is intended for transcompilation is defined
as follows:

e The language’s module exports bindings that define the surface syntax
of the language. The provided bindings expand only to transcompiler-
supported run-time forms. We describe this step further in section[2.3.2]

e Where applicable, macros record additional metadata that is required
for transcompilation. We describe this step further in section[2.3.3]

42

2.3. Hosting a Transcompiled Language in Racket

e The #%module-begin macro fully expands all the macros in the module
body, so that the rest of the transcompiler pipeline need not implement
macro expansion. We describe this step further in section

o After full macro expansion, #%module-begin adds externally loadable
information about the expanded module into the module. We describe
this step further in section[2.3.5]

e Any run-time support for running programs is provided alongside the
macros that define the syntax of the language. We describe this step
further in section 2.3.6]

The export bindings of L may include variables, and the presence of transcom-
pilation introduces some nuances into their meaning. When the meaning of a
variable in L is defined in L, we say that it is a non-primitive. When its meaning
is defined in the execution language, we say that it is a primitive. When the
meaning of its appearances is defined by a compiler (or a macro) of L, we say
thatitis a built-in. As different execution targets may have different compilers,
a built-in for one target may be a primitive for another.

2.3.2 Defining Surface Syntax

A module thatimplements the surface syntax of alanguage L exports a binding
for each predefined entity of L, whether that entity is a built-in variable, a core-
language construct, or a derived form. When the core language is a subset of
Racket, derived forms obviously should expand to the subset. Where the core
of L is a superset of Racket, additional constructs need an encoding in terms
of Racket’s core forms where the encoding is recognizable after expansion;
possible encoding strategies include:

e E1. Use a variable binding to identify a core-language form, and use
it in an application position to allow other forms to appear within the
application form. Subexpressions within the form can be delayed with
suitable lambda wrappers, if necessary.

o E2. Attach information to a syntax object through its syntax property table
(as found in every syntax object); macros that manipulate syntax objects
must then propagate properties correctly.

o E3. Store information about a form in a compile-time table that is external
to the module’s syntax objects.

e E4. Use Racket core forms that are not in L (not under their original
meaning), or combinations of forms involving such forms.

A caveat for E2 and E3 is that syntax properties and compile-time tables are
transient, generally becoming unavailable after a module is fully expanded;
any information to be preserved must be reflected as generated code in the
module’s expansion, as discussed in section Another caveat of such
“out-of-band” storage is that identifiers in the stored data must not be moved
out of band too early; a binding form must be expanded before its references
are moved so that each identifier properly refers to its binding.

In the case of L, the result of a macro-expansion should be compatible
with both the transcompiler and the Racket evaluator. The necessary duality
can be achieved if the surface syntax defining macros can adhere to these
constraints: (C1) exclude Racket core form uses that are not supported by the

43

2. ADOPTING A MACRO SYSTEM

compiler; (C2) add any compilation hints to Racket core forms in a way that
does not affect evaluation (e.g., as custom syntax properties); and (C3) encode
any compilation-specific syntax in terms of core forms that appear only in
places where they do not affect Racket execution semantics.

Where constraints C1-C3 cannot be satisfied, a fallback is to have
#%module-begin rewrite either the run-time code, transcompile-time code,
or both, to make the program conform to expected core language. Note that
rewriting may still be constrained by the presence of binding formsﬁ

For cases where a language’s forms do not map neatly to Racket bind-
ing constructs, Racket’s macro API supports explicit definition contexts [Flatt
et al, [2012], which enable the implementation of custom binding forms that
cooperate with macro expansion.

For an example of foreign core form encoding strategy E1, consider an L¢
with a parallel construct that evaluates two forms in parallel. This construct
might be defined simply as a “dummy” constant, recognized by the transcom-
piler as a specific built-in by its identifier, translating any appearances of
(parallel el e2) “function applications” appropriately:

(define parallel #f)

Alternatively, as an example of strategy E2, Lc’s (parallel el e2) form
might simply expand to (1ist el e2),butwitha 'parallel syntax property
on the list call to indicate that the argument expressions are intended to run
in parallel:

(define-syntax (parallel stx)
(syntax-case stx ()
[(parallel el e2)
(syntax-property #'(list el e2) 'parallel #t)]))

For Ly, parallel might instead be implemented as a simple pattern-based
macro that wraps the two expressions in lambda and passes them to a call-
in-parallel run-time function, again in accordance to strategy E1. The call-
in-parallel variable could then be treated as a built-in by the transcompiler
and implemented as a primitive for running in the Racket VM:

(define-syntax-rule (parallel el e2)
(call-in-parallel (lambda () el) (lambda () e2)))

For an example of adhering to constraint C3, we give a simplified definition
of Magnolisp’s typedef form. A declared type t isbound as a variable to allow
Racket to resolve type references; these bindings also exist for evaluation as
Racket, but they are never referenced at run time. The #%magnolisp built-in is
used to encode the meaning of the variable, but as it has no useful definition
in Racket, evaluation of any expressions involving it is prevented. The CORE
macro is a convenience for wrapping (#%magnolisp) expressions in an

4The principal constraint on encoding a language’s form is that a binding form in L should be
encoded as a binding form in Racket, because bindings are significant to the process of hygienic
macro expansion. Operations on a fully expanded module’s syntax objects, furthermore, can
reflect the accumulated binding information, so that a transcompiler may possibly avoid having
to implement its own management of bindings.

44

2.3. Hosting a Transcompiled Language in Racket

(if #£ #£) form to “short-circuit” the overall expression and make it
obvious to the Racket bytecode optimizer that the enclosed expression is never
evaluated. The annotate form is a macro that stores the annotations a ...,
which might, for example, include t’s C++ name.

(define #%magnolisp #f)

(define-syntax-rule (CORE kind arg ...)
(if #£f (#¥magnolisp kind arg ...) #f))

(define-syntax-rule (typedef t #:: (a ...))
(define t
(annotate (a ...) (CORE 'foreign-type))))

Using a macro system for syntax definition offers several advantages com-
pared to parsing in a more traditional way

e When custom syntactic forms can be defined as macros, parsing is al-
most “for free.” At the same time, the ability to customize a language’s
reader makes it possible for surface syntax to be different from Lisp’s
parenthesized, prefix notation.

e Macros and the macro API provide a convenient implementation for
desugaring and other rewriting-based program transformations. Such
transformations can be written in a modular and composable way.

e For making L itself macro-extensible, the implementation of L can simply
expose a selection of relevant Racket constructs—directly or through
macro adapters—to enable the inclusion of compile-time code within L
modules.

2.3.3 Storing Metadata

A language implementation may involve metadata that describes a syntax
object, butis notitself a core syntactic construct in the language. Such data may
encode information (e.g., optimization hints) that is meaningful to a compiler
or other kinds of external tools. Metadata might be collected automatically
by the language infrastructure (e.g., source locations in Racket), it might be
inferred by macros at expansion time, or it might be specified as explicit
annotations in source code (e.g., the export annotation of Magnolisp functions,
or the weak modifier of variables in the Vala language).

There is no major difference between encoding foreign syntax in terms of
Racket core language or encoding metadata; strategies E1-E4 apply for both.
The main way in which metadata differs is that it does not tend to appear (or
at least not remain) as a node of its own in a syntax tree. Any annotations in
L do have surface syntax, and thus appear explicitly in source code, but such
code cannot in general be directly analyzed, as unexpanded L code cannot
be parsed. A more workable strategy is to have L’s syntactic forms store any
necessary metadata during macro expansion.

5A macro’s process of validating and destructuring its input syntax can also be regarded as
parsing, even though the input is syntax objects rather than raw program text or token streams
[Culpepper} 2012].

45

2. ADOPTING A MACRO SYSTEM

For metadata, storage in syntax properties is a typical choice. Typed Racket,
for example, stores its type annotations in a custom ' type-annotation syntax
property [Tobin-Hochstadt et al., 2011].

Compile-time tables are another likely option for metadata storage. For
storing data for a named definition, one might use an identifier table, which
is a dictionary data structure where each entry is keyed by an identifier. An
identifier, in turn, is a syntax object for a symbol. Such a table is suitable for
both local and top-level bindings, because the syntax object’s lexical context
can distinguish different bindings that have the same symbolic name.

Recording metadata in compile-time state has the specific advantage of the
data getting collated already during macro expansion which enables lookups
across macro invocation sites, without any separate program analysis phase.
One could, for example, keep track of variables annotated as #:mutable, per-
haps to enforce legality of assignments already at macro-expansion time, or to
declare immutable variables as const in C++ outputﬁ

(define-for-syntax mutables (make-free-id-table))

(define-syntax (my-define stx)
(syntax-case stx ()
[CxWv)
#' (define x v)]
[(_ #:mut x v)
(free-id-table-set! mutables #'x #t)
#' (define x v)1))

Itis also possible to encode annotations in the syntax tree proper, which has
the advantage of fully subjecting annotations to macro expansion. Magnolisp
adopts this approach for its annotate form for annotation recording, which
translates to a special ' annotate-property-flagged let-values form to contain
annotations. Each contained annotation expression a (e.g., [type]) has
its Racket evaluation prevented by encoding it as a Magnolisp CORE form.
Magnolisp’s type and annotate forms are defined roughly as follows:

; type annotation with type expression t
(define-syntax-rule (type t)
(CORE 'anno 'type t))

; annotates the enclosed expression e
(define-syntax (annotate stx)
(syntax-case stx ()
[(_ (@ ...) e)
(syntax-property
(syntax/loc stx ; retain stx’s source location
(let-values ([() (begin a (values))] ...)
e))
'annotate #t)]))

The annotate-generated let-values forms introduce no bindings, and their
right-hand-side expressions yield no values; only the expressions themselves

6The define-for-syntax form is like define, but for macro-expansion time.

46

2.3. Hosting a Transcompiled Language in Racket

matter. Where the annotated expression e is an initializer expression, the
Magnolisp compiler decides which of the annotations to actually associate
with the initialized variable.

2.3.4 Expanding Macros

One benefit of reusing the Racket macro system with L is to avoid having to
implement an L-specific macro system. When the Racket macro expander takes
care of macro expansion, the remaining transcompilation pipeline only needs
to understand L’s core syntax (and any related metadata). Racket includes two
features that make it possible to expand all the macros in a module body, and
afterwards process the resulting syntax, all within the language.

The first of these features is the #%module-begin macro, which can trans-
form the entire body of a module. The second is the 1local-expand [Flatt et al.
2012] function, which may be used to fully expand all the #%module-begin
sub-forms. Using the two features together is demonstrated by the follow-
ing macro skeleton, which might be exported as the #%module-begin of a
language:

(define-syntax (module-begin stx)
(syntax-case stx ()
[(module-begin form ...)
(let ([ast (local-expand
#' (#%module-begin form ...)
'module-begin null)])
(do-some-processing-of ast))]))

The local-expand operation also supports partial sub-form expansion, as
it takes a “stop list” of identifiers that prevent descending into sub-expressions
with a listed name. At first glance, one might imagine exploiting this feature
to allow foreign core syntax to appear in a syntax tree, and simply prevent
Racket from proceeding into such forms. The main problem with this strategy
is that foreign binding forms would not be accounted for in Racket’s binding
resolution. That problem is compounded if foreign syntactic forms can in-
clude Racket syntax sub-forms; the sub-forms need to be expanded along with
enclosing binding forms. Indeed, to prevent these problems, local-expand
(in most cases) automatically extends a stop list to include additional Racket
core forms if it includes anything, so that partial expansion is constrained to
the consistent case that stays outside of binding forms.

2.3.5 Exporting Information to External Tools

After the #%module-begin macro has fully expanded the content of a module,
it can gather information about the expanded content to make it available for
transcompilation. The gathered information can be turned into an expression
that reconstructs the information, and that expression can be added to the
overall module body that is produced by #%module-begin.

The expression to reconstruct the information should not be added to
the module as a run-time expression, because extracting the information for
transcompilation would then require running the program (in the Racket VM).

47

2. ADOPTING A MACRO SYSTEM

Instead, the information is better added as compile-time code. The compile-
time code is then available from the module while compiling other L modules,
which might require extra compile-time information about a module that is
imported into another L module. More generally, the information can be ex-
tracted by running only the compile-time portions of the module, instead of
running the module normally.

As a further generalization of the compile-time versus run-time split, the
information can be placed into a separate submodule within the module. A
submodule can have a dynamic extent (i.e., run time) that is unrelated to the
dynamic extent of its enclosing module, and its bytecode may even be loaded
separately from that of the enclosing module. As long as a compile-time
connection is acceptable, a submodule can include syntax-quoted data that
refers to bindings in the enclosing module, so that information can be easily
correlated with bindings that are exported from the module.

For example, suppose that L implements definitions by producing a normal
Racket definition for running within the Racket virtual machine, but it also
needs a syntax-quoted version of the expanded definition to compile to a
different target. The module+ form can be used to incrementally build up a to-
compile submodule that houses definitions of the syntax-quoted expressions:

(define-syntax (L-define stx)
(syntax-case stx ()
[(L-define id rhs)
(with-syntax ([rhs2 (local-expand #'rhs
'expression null)])
#' (begin
(define id rhs2)
(begin-for-syntax
(module+ to-compile
(define id #'rhs2)))))1))

Wrapping the to-compile submodule with begin-for-syntax makes it reside
at compilation time relative to the enclosing module, which means thatloading
the submodule will not run the enclosing module. Within to-compile, the
expanded right-hand side is quoted as syntax using #°.

Syntax-quoted code is often a good choice of representation for code to be
compiled again to a different target language, because lexical-binding infor-
mation is preserved in a syntax quote. Source locations are also preserved,
so that a compiler can report errors or warnings in terms of a form’s original
location (mglc fetches original source text based on location).

Another natural representation choice is to use any custom intermediate
representation (IR) of the compiler. Magnolisp, for example, processes Racket
syntax trees already during macro expansion, turning them into its IR format,
which also incorporates metadata. The IR uses Racket struct instances to
represent AST nodes, while still retaining some of the original Racket syntax
objects as metadata, for purposes of transcompile-time reporting of seman-
tic errors. Magnolisp programs are parsed at least twice, first from text to
Racket syntax objects by the reader, and then from syntax objects to the IR
by #%module-begin; additionally, any macros effectively parse syntax objects
to syntax objects. As parsing is completed already in #%module-begin, any

48

2.3. Hosting a Transcompiled Language in Racket

Magnolisp syntax errors are discovered even when just evaluating programs
as Racket.

The #%module-begin macro of magnolisp exports the IR via a submodule
named magnolisp-s2s. The submodule contains an expression that recon-
structs the IR, albeit in a somewhat lossy way, excluding details that are irrel-
evant for compilation. The IR is accompanied by a table of identifier binding
information indexed by module-locally unique symbols, which the transcom-
piler uses for cross-module resolution of top-level bindings, to reconstruct the
identifier binding relationships that would have been preserved by Racket if
exported as syntax-quoted code. As magnolisp-s2s submodules do not refer
to the bindings of the enclosing module, they are loadable independently from
it.

2.3.6 Run-Time Support

The modules that implement a Racket language can also define run-time sup-
port for executing programs. For L, such support may be required for the
compilation target environment; for L, any support would also be required
for the Racket VM. Run-time support for L is required when L exports bind-
ings to run-time variables, or when the macro expansion of L can produce code
referring to run-time variables (even if such a variable’s run-time existence is
very limited, as it is for #%magnolisp).

Every run-time variable requires a run-time binding, so that Racket can
resolve references to them. When binding built-ins and primitives of L¢, any
initial value expression can be given, as the expressions are not evaluated. A
literal constant expression is a suitable initializer for built-ins of Lg, which are
initialized for Racket VM execution, but generally never referenced.

Each non-primitive is—by definition—implemented in L, with a single def-
inition applicable for all targets. Strictly speaking, though, any non-primitive
that is exported by a Racket module L cannot itself be implemented in L, but
must use a smaller language; the Racket module system does not allow cyclic
dependencies.

Defining a primitive of L involves specifying a translation for appearances
of the variable into any target language. For a Racket VM target, the variable’s
value must specify its meaning. For other targets, it may be most convenient
to specify the target language mapping in L, assuming that L includes specific
language for that purpose. Asthe mappings are only needed during transcom-
pilation, any metadata specifying them might be placed into a module that is
only loaded on demand by the compiler.

The magnolisp language, for example, binds three run-time variables, all
of which are built-ins. Of these, #%¥magnolisp is only used for its binding,
and only during macro expansion. The compiler knows that conditional ex-
pressions must always be of type Bool, and that Void is the unit type of the
language; this knowledge is useful during type checking and optimization.
References to the Magnolisp built-ins may appear in code generated by mag-
nolisp’s macros, and hence they must already be bound for the language
implementation. Their metadata (specifying C++ translations) is not required
by the macros, however, which makes it possible to declare that information
separately, using Magnolisp’s own syntax for storing metadata for an existing
binding:

49

2. ADOPTING A MACRO SYSTEM

#lang magnolisp/base

(require "core.rkt" "surface.rkt")
(declare #:type Bool #:: ([foreign bool]))
(declare #:type Void #:: ([foreign void]))

2.4 Evaluation

Our Racket-hosted transcompilation approach is generic—in theory capable
of accommodating a large class of languages. In practice, we imagine that it
is most useful for hosting newly developed languages (such as Magnolisp),
where design choices can achieve a high degree of reuse of the Racket infras-
tructure. In particular, Racket’s support for creating new, extensible languages
could be a substantial motivation to follow our approach. Racket hosting is
particularly appropriate for an evolving language, since macros facilitate quick
experimentation with language features.

Another potential use of our strategy is to add transcompilation support
for an existing Racket-based language. We have done so for Erdaﬂ creating
Erdac, as its C++-translatable variant. Erda has Racket-like syntax, but its
evaluation differs significantly from both Racket and Magnolisp. Erdac,.; pro-
grams nonetheless compile to C++ using an unmodified Magnolisp compiler.

Erdac, . illustrates that Magnolisp is not only a language, but also in-
frastructure for making Racket-based languages translatable into C++. A
Magnolisp-based language must be transformable into Magnolisp’s core lan-
guage, which is more limited than that of Racket (lacking first-class functions,
escaping closures, etc.), but the language can have its own runtime libraries
(whose names must be magnolisp-s2s-communicated to mglc). The Racket
API of Magnolisp includes a make-module-begin function that makes it con-
venient for other languages to implement mglc-compatible #%module-begin
macros—ones that communicate all the expected information.

A potential drawback of transcompilation is the disconnect between the
original, unexpanded code and its corresponding transcompiler-generated
source code. This disconnect can make debugging difficult when things go
wrong. The problem is made worse by macros, and it can be particularly
pressing when the output is hard for humans to read. Since Racket’s macro
expansion preserves source locations, however, a transcompiler could at least
emit the original locations via #1ine directives (as in C++) or source maps (as
supported by some JavaScript environments).

2.4.1 Language Design Constraints

In our experience, two design constraints make Racket reuse especially ef-
fective: the hosted language’s name resolution should be compatible with
Racket’s, and the hosted language’s syntax should use S-expressions.
Overloading as a language feature, for instance, appears a bad fit for
Racket’s name resolution. Instead of overloading, names in Racket programs
are typically prefixed with a datatype name, as in string-length and vector-
length. Constructs for renaming at module boundaries, such as prefix-in
and prefix-out, help implement and manage name-prefixing conventions.

7https ://bldl.ii.uib.no/software/pltnp/erda.html

50

https://bldl.ii.uib.no/software/pltnp/erda.html

2.5. Motivation for Racket-Hosted Transcompilation

An S-expression syntax is not strictly necessary, but Racket’s macro pro-
gramming APIs work especially well with its default parsing machinery. The
language implementor can then essentially use concrete syntax in patterns and
templates for matching and generating code. This machinery is comparable
to concrete-syntax support in program transformation toolkits such as Rascal
[Klint et al.,|2009] and Spoofax [Kats and Visser}[2010]. Still, other kinds of con-
crete syntaxes can be adopted for Racket languages, with or without support
for expressing macro patterns in terms of concrete syntax, as demonstrated by
implementations of Honu [Rafkind and Flatt, [2012] and Python [Ramos and
Leitao, 2014].

2.4.2 Example Use Case: A Static Component System

Macro-enabled extensibility combined with a constrained core (as in Magno-
lisp) provides an opportunity to explore the limits of macro-based expressive-
ness. We sketch a use case for capable macros in a constrained context: a
component system in Magnolisp.

When organizing a collection of software building blocks, it can be useful to
have a mechanism for “wiring up” and parameterizing building blocks to form
larger wholes (e.g., individual software products of a product line). Racket
already includes a component system of units [Culpepper et al., 2005; Owens
and Flatt}, |2006]], which are first-class, dynamically composed components.

The macro-expansion of Racket’s unit construct uses features of Racket’s
core that are not included in Magnolisp. However, at compile time Magnolisp
has access to all of Racket, and hence enough power to implement a purely
static component system. As a proof of concept, we provide animplementation
of a rudimentary component system in figure

Existing solutions suggest that it should also be possible to implement
a more capable static component system in terms of Racket macros. Chez
Scheme’s modules support static, external linking, and have been shown to
cater for a variety of use cases [Waddell and Dybvig| [1999]. Racket’s built-in
“packages” system resembles the Chez design, and is implemented in terms
of macros, relying on features such as sub-form expansion, definition con-
texts, and compile-time binding. As packages are implemented statically, they
require little from the run-time language.

2.5 Motivation for Racket-Hosted Transcompilation

Hosting a language via macros offers the potential for extensibility in the
hosted language. This means leveraging the host language both to provide a
language extension mechanism and a language for programming any exten-
sions. While a basic language extension mechanism (such as the C preproces-
sor or a traditional Lisp macro system) may be implementable with reason-
able effort, safer and more expressive mechanisms require substantial effort
to implement from scratch. Furthermore, supporting programmable (rather
than merely substitution based) language extensions calls for a compile-time
language evaluator, which may not be readily available for a transcompiled
language.

Hosting in Racket offers safety and composability of language exten-
sions through lexical scope and phase separation respecting macro expansion.

51

2. ADOPTING A MACRO SYSTEM

#lang magnolisp
(define-syntax-rule (define<> x f e)
(define-syntax f (cons #'x #'e)))

(define-syntax (use stx)
(syntax-case stx (with as)
[(_ £ with new-x as £x)
(let ([v (syntax-local-value #'£f)])
(with-syntax ([old-x (car v)] [e (cdr v)])
#' (define fx
(let-syntax ([old-x
(make-rename-transformer #'new-x)])
e))))I1))

(primitives [#:type int] [#:type long]
[#:function (->long x) :: (-> int long)])

(define<> T id
(annotate ([type (-> T T)1)
(lambda (x) x)))

; int int_id(int const& x) { return x; }
(use id with int as int-id)

; long long_id(long const& x) { return x; }
(use id with long as long-id)

; long run(int consté& x)
; { return long_id(to_long(int_id(x))); }
(define (run x) #:: (export)

(long-id (->long (int-id x))))

Figure 2.3: A primitive “component” system for Magnolisp. The macro de-
fine<> declares a named “expression template” f, and the macro use spe-
cializes such templates for a specific parameter x. Use of the two macros is
demonstrated by a C++-inspired function template id with a type parameter
T, also showing how macros might compensate for lack of parametric poly-
morphism. Corresponding mglc-generated C++ code is given in comments.

52

2.6. Related Work

Racket macros” hygiene and referential transparency help protect the pro-
grammer from inadvertent “capturing” of identifiers, making it more likely
that constructs defined modularly (or even independently) compose success-
fully. Phase separation [Flatt, 2002] means that compile time and run time have
distinct bindings and state. The separation in the time dimension is particu-
larly crucial for a transcompiler, as it must be possible to parse code without
executing it. The separation of bindings, in turn, helps achieve language sep-
aration, in that one can have Racket bindings in scope for compile-time code,
and hosted-language bindings for run-time code.

Racket’s handling of modules can also be leveraged to support modules
in the hosted language, with Racket’s raco make tool for rebuilding bytecode
then automatically serving as a build tool for multi-module programs in the
language. The main constraint is that Racket does not allow cycles among
module dependencies.

Particularly for new languages it can be beneficial to reuse existing lan-
guage infrastructure. With a Racket embedding one is in the position to reuse
Racket infrastructure on the front-end side, and the target language’s infras-
tructure (typically libraries) on the back-end side. Reusable front-end side
language tools might include IDEs [Findler et al}, 2002]], documentation tools
[Flatt et al.,[2009], macro debuggers [Culpepper and Felleisen, [2007], etc. Al-
though some tools might not be fully usable with programs that cannot be
executed as Racket, the run vs. compile time phase separation means that a
tool whose functionality does not entail running a program should function
fully.

Racket’s language extension and definition machinery may be useful not
only for users, but also for language implementors. Its macros have actually
become a compiler front end API that is sufficient for implementing many
general-purpose abstraction mechanisms in a way that is indistinguishable
from built-in features [Culpepper and Felleisen| 2006]. In particular, a basic
“sugary” construct is convenient to implement as a macro, as both surface
syntax and semantics can be specified in one place.

2.6 Related Work

Many language implementations run on Lisp dialects and also target other
environments. Some languages, such as |Linj| [2013] or Clojure plus [Clojure-
Script [2016], primarily provide a Lisp-like language in the target environ-
ment. Other languages, such as STELLA [Chalupsky and MacGregor, [1999]
and Parenscript [2016]], primarily match the target environment’s semantics
but enable execution in a Lisp as well. Magnolisp is closer to the latter group,
in that it primarily targets the target environment’s semantics.

Most other languages previously implemented on Racket have been meant
for execution only on the Racket VM, but a notable exception is Dracula [East-
lund)| 2012]], which compiles macro-expanded programs to ACL2. Its (so far
largely undocumented) compilation strategy is to expand syntactic forms to a
subset of Racket’s core forms, and to specially recognize applications of cer-
tain functions (such as make-generic) for compilation to ACL2. The part of
a Dracula program that runs in Racket is expanded normally, while the part
to be translated to ACL2 is recorded in a submodule through a combination

53

2. ADOPTING A MACRO SYSTEM

of structures and syntax objects, where binding information in syntax objects
helps guide the translation.

Whalesong [[Yoo and Krishnamurthi,2013] and Pycket [Bauman et al.|,2015]
are both implementations of Racket targeting foreign language environments.
Their approaches to acquiring fully macro-expanded Racket core language
differ from ours. Whalesong compiles to JavaScript via Racket bytecode,
which is optimized for efficient execution (e.g., through inlining), but does
not retain all of the original (core) syntax; thus, it is not the most semantics-
rich starting point for translation into foreign languages. The Pycket compiler
instead performs external expansion to get core Racket; it reads, expands,
and JSON-serializes Racket syntax, in order to pass it over to the RPython
meta-tracing framework:

macroexpand
Racket core Racket JSON
compile l Pycket A
run macroexpand
Racket VM« bytecode Racket core Racket
Whalesong | compile l
run
JavaScript Racket VM [« bytecode

Ziggurat [Fisher and Shivers, 2008]—also built on Racket (then PLT
Scheme)—is a meta-language system for implementing extensible languages.
Its approach allows both for self-extension and transcompilation of languages,
with different tradeoffs compared to ours. Ziggurat features hygienic macros
that are Scheme-like, but have access to static semantics, as defined for a
language through other provided mechanisms; Racket lacks specific support
for interleaving macro expansion with custom analysis. Ziggurat’s macros
may be locally scoped, but not organized into separately loadable modules;
Racket allows for both. There is basic safety of macro composition with
respect to Ziggurat’s own name resolution, but composability of custom static
semantics depends on their implementation. Ziggurat includes constructs
for defining new syntax object types, while our approach requires encoding
“tricks.”

Lightweight Modular Staging (LMS) [Rompf and Odersky},2010] is similar to
our technique in goals and overall strategy, but leveraging Scala’s type system
and overload resolution instead of a macro system. With LMS, a programmer
writes expressions that resemble Scala expressions, but the type expectations
of surrounding code cause the expressions to be interpreted as AST construc-
tions instead of expressions to evaluate. The constructed ASTs can then be
compiled to C++, CUDA, JavaScript, other foreign targets, or to Scala after op-
timization. AST constructions with LMS benefit from the same type-checking
infrastructure as normal expressions, so a language implemented with LMS
gains the benefit of static typing in much the same way that a Racket-based
language can gain macro extensibility. LMS has been used for languages with
application to machine learning [Sujeeth et al., 2011], linear transformations
[Ofenbeck et al., 2013], fast linear algebra and other data structure optimiza-
tions [Rompf et al.}2012], and more.

54

2.6. Related Work

The Accelerate framework [Chakravarty et al.,2011; McDonell et al., 2013]
is similar to LMS, but in Haskell with type classes and overloading. As with
LMS, Accelerate programmers benefit from the use of higher-order features
in Haskell to construct a program for a low-level target language with only
first-order abstractions.

Copilot [Pike et al., [2013] is also a Haskell-embedded language whose
expressions are interpreted as AST constructions. Like Racket, Copilot has a
core language, into which programs are transformed prior to execution. The
Copilot implementation includes two alternative back ends for generating C
source code; there is also an interpreter, which the authors have employed
for testing. Copilot’s intended domain is the implementation of programs
to monitor the behavior of executing systems in order to detect and report
anomalies. The monitoring is based on periodic sampling of values from C-
language symbols of the monitored, co-linked program. Since such symbols
are not available to the interpreter, the language comes built-in with a feature
that the programmer may use to specify representative “interpreter values” for
any declared external values [Pike et al., 2012]; this is similar to Magnolisp’s
support for “mocking” of foreign functions.

The Terra programming language [DeVito et al., [2013] takes an approach
similar to ours, as it adopts an existing language (Lua) for compile-time ma-
nipulation of constructs in the run-time language (Terra). Like Racket, Terra
allows compile-time code to refer to run-time names in a way that respects lex-
ical scope. Terra is not designed to support transcompilation, and it compiles
to binaries via Terra as a fixed core language. Another difference is Terra’s
emphasis on supporting code generation at run time, while our emphasis is
on separation of compile and run times.

CGen [Selgrad et al) 2014] is a reformulation of C with an S-expression-
based syntax, integrated into Common Lisp. An AST for source-to-source
compilation is produced by evaluating the CGen core forms; this differs from
our approach, where run-time Racket core forms are not evaluated. Com-
mon Lisp’s defmacro construct is available to CGen programs for defining
language extensions; Racket’s lexical-scope-respecting macros compose in a
more robust manner. Racket’s macro expansion also tracks source locations,
which would be a useful feature for a CGen-like tool. CGen uses the Common
Lisp package system to implement support for locally and explicitly switching
between CGen and Lisp binding contexts, so that ambiguous names are shad-
owed; Racket does not include a similar facility (approximate implementations
thereof should be possible within Racket, however).

SC [Hiraishi et al.,2007] is another reformulation of C with an S-expression-
based syntax. It supports language extensions defined by transformation
rules written in a separate, Common Lisp based domain-specific language
(DSL). The rules treat SC programs as data, and thus SC code is not subject
to Lisp macro expansion (as in our solution) or Lisp evaluation (as in CGen).
Fully transformed programs (in the base SC-0 language) are compiled to C
source code. SC programs themselves have access to a C-preprocessor-style
extension mechanism via which there is limited access to Common Lisp macro
functionality.

55

2. ADOPTING A MACRO SYSTEM

2.7 Conclusion

We have described a generic approach for having Racket host the front end
of a source-to-source compiler. The strategy involves a proper embedding of
the hosted language into Racket, so that Racket’s usual language definition
facilities are exploited rather than bypassed. Notably, the macro and module
systems are still available and, if exposed to the hosted language, provide
a way to implement and manage language extensions within the language.
Furthermore, tools such as the DrRacket IDE work with the hosted language,
recognize the binding structure of programs written in the language, and can
usually trace the origins of macro-transformed code.

Among the various ways to arrange for a source-to-source compiler to
gain access to information about a program, our approach is most appropri-
ate when the language’s macros target a specific foreign core language and
runtime library and when it is useful to avoid “extra-linguistic mechanisms”
[Felleisen et al.,[2015] by having the language itself communicate its execution
requirements to the outside world. Such communications may be prepared
as submodules, which can also contain an AST in the appropriate core lan-
guage and representation, allowing one source language to support multiple
different targets. Racket’s separate compilation and build management help
limit preparation work to modules whose source files or dependencies have
changed.

Racket’s macro system is expressive enough that the syntax and semantics
of a variety of language constructs can be specified in a robust way. Given that
typical macros compose safely, and given that hygiene reduces the likelihood
of name clashes and allows macros to be defined privately, pervasive use of
syntactic abstraction becomes a realistic alternative to manual or tools-assisted
writing of repetitive code. Such abstraction can benefit both the codebase
implementing a Racket-based language, as well as programs written in a
macro-enabled Racket-based language.

Acknowledgements

Carl Eastlund provided information about the implementation of Dracula.
Magne Haveraaen, Anya Helene Bagge, and anonymous referees provided
useful comments on drafts of this paper. This research has in part been sup-
ported by the Research Council of Norway through the project DMPL—Design
of a Mouldable Programming Language.

56

CHAPTER

Abstract Data Representations for
Abstract Syntax

In Racket’s macro model, S-expressions expand into S-expressions, and ulti-
mately those expressions will be in a core language. In Racket and many other
Lisp implementations, core S-expressions are eventually parsed into abstract
syntax trees for further processing prior to execution. As explained in chap-
ter [2} we can choose what information to encode into enriched S-expressions,
for purposes of source-to-source compilation.

To support generation of human-approachable code in a variety of target
languages, we likely want to retain more source-language semantics in our
program representation than we would for mere execution; that information
needs to be carried through to the individual target language back ends that
require it, meaning that we require a wider-than-usual communication path
through the compilation pipeline.

In this chapter, we discuss how we might make further use of macros in a
compiler implementation, to generate an AST implementation to function as
the compiler’s intermediate representation. We furthermore describe a way
to realize an illusion of an AST representing fewer and simpler syntactic con-
structs than it actually does, depending on how it is viewed. Our solution
is based on AST-node-like interfaces implemented as projections into actual
syntax objects. Those underlying data objects are also treated abstractly (as
abstract data types), which makes the design especially compatible with inter-
faces and concepts, as found in Magnolia; this was one of my goals in devising
this AST solution.

This chapter gives one answer to the question I presented at OOPSLE
2014 in Antwerp regarding coming up with new ways to declaratively specify
abstractions for generated program object models supporting program trans-
formations [Hasul,2014].

57

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

58

Illusionary Abstract Syntax

Tero Hasu ANYA HELENE BAGGE

Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway

Abstract

We present a scheme for declarative abstract syntax implementation such
that it: allows for commonality-capturing abstractions beyond common
grammar derivations (e.g., common structure or information content); as-
sumes integration with the host language, relying on an expressive macro
system instead of an external code generator; and requires little from
the generated run-time language, instead shifting responsibility to code-
generation time.

Each generated syntax object type exposes an interface, allowing for
its data representation to remain hidden if desired. For additional abstrac-
tion, one can declare similar abstract interfaces spanning multiple object
types or subsets thereof. The distinction between actual and “virtual”
objects is further blurred by each interface having an associated “data
representation” for purposes of pattern matching.

3.1 Introduction

A compiler translates its source language into its target language through
successive program transformation steps, transforming an intermediate repre-
sentation (IR) of some kind. One representation choice is to use an abstract
syntax tree (AST) to encode source, target, or intermediate language abstract
syntax as a tree-like data structure. In an AST implementation, each language
construct typically gets a dedicated data type, each following some common
data-model-specific conventions.

We have previously [86] speculated that it might be useful to support
declarative implementation of abstractions reflecting commonalities other
than those implied by the productions of a grammar, e.g., cross-cutting ab-
stract syntax concerns such as nodes containing identifiers, sub-expressions or
statement lists. It might furthermore be useful for those abstractions to present
the “illusion” of being actual data structures (with a representation). Such ab-
straction should inherently offer some insulation against incidental changes

© 2014-2016 Tero Hasu and Anya Helene Bagge.

59

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

in data representation choices, where the abstract syntax itself remains un-
changed. It is likewise clear that one can create more general and reusable
transformation routines by coding them against abstractions that capture the
necessary semantics for a particular kind of transformation, but abstract over
related object types where their distinctions are irrelevant.

For example:

o We might have block expressions, if-statements, loops and let-statements
all containing lists of statements—and we may only be interested in that
list (e.g., for adding/removing parts of it).

e We might have many different kinds of expressions that all have sub-
expressions that we would like to treat in the same way.

e Some information, such as types, may not be directly part of the AST
structure, but we may be able to compute it or look it up, and then
present a view of a typed AST.

We present a lightweight AST library to support abstraction of that na-
ture, with simple foundations that: (1) allows the implementation of basic
AST abstractions that appear as actual data structures; (2) allows the creation
of language abstractions for implementing (or declaring) AST abstractions;
and (3) require few language features for describing the run-time behavior of
AST implementations. Instead, the scheme requires a capable macro system
for implementing language-integrated, domain-specific constructs for speci-
fying the desired data structures and abstractions, and for generating their
implementations.

Our design is inspired by the concept of abstract data types: we can gener-
ate similar sets of data access operations regardless of whether those operations
are for an actual data structure or an abstraction. Furthermore, we can also
generate and bind macros that create the appearance of abstract data having
a concrete representation. Macro uses expand away, however, and any AST
access code that remains is not cluttered by the AST implementation details;
rather, it just entails abstract values and functions that manipulate them.

We have an implementation of our scheme, incorporated into a small pro-
gram transformation toolkit that also includes a collection of higher-order
functions to assist in programming traversals and transformations over gen-
erated ASTs. The toolkit is named Illusyn, and it is implemented as a library
in the Racket programming language [70], whose macro system is suitable for
performing the necessary code generation within the language.

Asan example use case, we have applied Illusyn within the implementation
of the research programming language Magnolisp [88], using it extensively
during analysis and translation into C++ source code. Magnolisp is likewise
implemented in Racket, and has depended on macros from the beginning
for defining its (extensible) surface syntax. We found it fitting to continue
from there by enabling syntactic abstraction of a different nature within the
compiler’s IR. Magnolisp is also relevant to us in that it demonstrates a way
to adopt the Racket macro system for a language that neither is Racket nor
requires it for deployment; that is one possibility for acquiring a macro system
capable of hosting our AST generation scheme.

60

3.2. Motivation for Abstraction-Friendly AST APIs

3.1.1 Contributions

The main contributions of this paper are:
e a macro-focused scheme for implementing AST APIs, with the benefit
of natural host-language embedding, and few requirements on the run-
time language, which allows for:

- declarative implementation of both grammar-derived and cross-
cutting non-grammar-derived abstractions for generated abstract
syntax trees;

- unorthodox AST abstractions by adopting views (a la Wadler [189])
for abstract interfaces;

— view-directed traversals over ASTs;

e Illusyn, a program-transformation library with an AST API generator
that implements the above ideas.

3.2 Motivation for Abstraction-Friendly AST APIs

An AST implementation used within a compiler should be able to represent
both source and target language programs, and any in-between language.
It is common to define an intermediate core language with a simpler, some-
what language agnostic syntax, which is something in between “desugared”
source language and “ensugared” target language. Programs reduced into
core language should have fewer similar-yet-different constructs, requiring
fewer cases of alternative processing logic to manipulate; consequently, there
should be less repetitive processing code to break when the intermediate rep-
resentation inevitably changes one day.

Unfortunately, there are limits to core language minimalism. The limita-
tions can be particularly severe in source-to-source compilers; they sometimes
require a wider communication path between their front and back ends, so
that sufficient semantic information can be carried through the compilation
pipeline to allow high-level constructs to be preserved or recreated in the tar-
get language. In such cases, the implementor sometimes (and only sometimes)
needs to treat similar-yet-different constructs differently. This is the primary
motivation for our approach: we would like cost-effective implementation of
a sufficiently rich AST, with apparent core-language-style simplicity as appro-
priate.

An abstraction-friendly AST API benefits a compiler engineer in the ob-
vious way of removing the cost of manual implementation of the chosen
abstractions (to the extent that the generator supports them). For an exam-
ple of hand-written code implementing a commonality-capturing abstraction,
consider this implementation of a StatCont abstraction representing anything
containing a sequence of statements:

; Statement container is BlockStat, BlockExpr or LetStat
(define (StatCont? ast)
(or (BlockStat? ast) (BlockExpr? ast) (LetStat? ast)))

; Get the list of statements
(define (StatCont-ss ast)

61

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

ey ()

(struct DeclVar (id t)) (struct DeclVar (id t))
(struct DefVar (id t v)) (struct DefVar DeclVar (v))

(3)

(struct DefVar (id t v))
(struct Undefined ())

Figure3.1: Alternative declarations of syntax object types for the same abstract
syntax: (1) unrelated types; (2) with subtyping, variable definition being a
special case of variable declaration; and (3) with DeclVar represented as DefVar
containing an Undefined initializer expression. In each of these definitions, id
is the name field, t is the type field, and v is the initial-value-expression field.

(cond
[(BlockStat? ast) (BlockStat-ss ast)]
[(BlockExpr? ast) (BlockExpr-ss ast)]
[(LetStat? ast) (LetStat-ss ast)]
[else (raise-argument-error
'StatCont-ss "StatCont?" ast)]))

; Set the list of statements
(define (set-StatCont-ss ast ss)
(cond
[(BlockStat? ast) (set-BlockStat-ss ast ss)]
[(BlockExpr? ast) (set-BlockExpr-ss ast ss)]
[(LetStat? ast) (set-LetStat-ss ast ss)]
[else (raise-argument-error
'set-StatCont-ss "StatCont?" ast)]))

The StatCont?, StatCont-ss, and set-StatCont-ss functions together de-
fine a small “statement container” interface, abstracting over the differences
between language constructs containing statement sequences (e.g., Block-
Stat). The three functions are a predicate and accessors for getting and setting
(with functional update) the contained statement sequence ss.

Being able to implement such code declaratively should make it less tempt-
ing for the engineer to avoid the abstraction adoption cost, and instead re-
sort to writing repetitive, representation-specific program transformations.
One might also expect to gain some insulation from changes to incidental,
implementation-specific program representation choices, such as shown in
figure 3.1}

Deciding between concrete object representations can seem arbitrary when
no choice is clearly “better” than the other. Equipped with a sufficiently
expressive API generator one may be in a position to make the less arbitrary
choice of exposing all of the “good” “representations.” Such a tool can also
make the distinction between object fields and annotations (i.e., open-ended

62

3.3. The Illusyn Library

collections of secondary, “non-structural” information in syntax objects) less
prominent.

3.3 The Illusyn Library

Illusy (Ilusionary Syntax) is a Racket library for defining AST APIs and
implementing them in a mostly declarative manner. As the resulting APIs
support term rewriting strategies [180], Illusyn can in itself also be regarded as
a lightweight program transformation toolkit. In this section we introduce
Ilusyn, give an overview of its features, and describe the more traditional
program transformation features that it has.

Ilusyn is founded on the scheme described later in section 3.8 —for each
construct in the abstract syntax, we provide a node type and functions to access
and manipulate the node (analogous to the way one might make one class for
each construct in an object-oriented AST implementation). On top of those
foundations we have built a number of AST abstraction facilities:

o Specifically, we allow each concrete node type to have any number of ab-
stract interfaces, each of which may abstract over any number of concrete
node types (perhaps only concerning parts of the data in them);

e we optionally allow only a subset of a node type’s values to support an
abstract interface;

o we allow conformance to one abstraction to imply conformance to others;

e we make abstract interfaces resemble those of concrete nodes, support-
ing pattern matching, (prototype-based) building, and traversal, among
other operations;

o we adopt the views mechanism (a la Wadler [189]]) for pattern matching
on the abstract interfaces, which by design have exactly one “natural”
view (that the programmer need not specify).

As data representation for AST nodes, Illusyn uses Racket structures, which
are instances of structure types. Such types are record types with named fields,
making them a form of algebraic data type (of the “product type” kind).
However, Racket’s structure types also have some of the characteristics of
abstract data types (ADTs), since they are given a public name and some type-
specific operations (such as a membership predicate and an accessor function
for each field). This benefits us in that we can create the illusion of abstract
interfaces appearing as if they were regular Racket structure types; we discuss
this further in section

A structure type may be defined by the user with the struct form. Such
a definition also binds a type-specific constructor with positional arguments
corresponding to the order of the declared fields. The struct form also “co-
operates” [73] with Racket’s pattern matching construct (i.e., match [168]), so
that structures may be matched by their type name, and their fields by their
constructor position. Again, through Racket’s extension facilities, we can
create the illusion of abstract interfaces being data structures with positional
fields; we discuss this further in section|3.5

1Documentation: https://bldl.ii.uib.no/software/pltnp/illusyn.html

63

https://bldl.ii.uib.no/software/pltnp/illusyn.html

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

strategy
combinators
use

primitive
traversal
operators

constructor program
patterns representation

Figure 3.2: A Racket-based architecture for basic program transformation
support. Structures provide data representation, and cooperate with match to
support pattern matching. Macros generate structure-type-specific implemen-
tations of define-generics-declared generic methods to support composition
of strategies that operate on concrete AST nodes.

3.3.1 Node Data Types

We use the term node (data) type (NDT) for types used to represent abstract
syntax data in an AST. In Illusyn, such a type is declared using the define-
ast macro, which expands to a structure type declaration of the same name,
as well as some additional definitions. Field names must be specified, as one
would for structure types. Additionally, one must use a keyword to indicate—
for purposes of tree traversals—how many AST nodes the fields may contain:
#:none for none, #:maybe for zero or one, #: just for exactly one, and #:many
forany number. For example, we might declare the AST node types BlockExpr,
BlockStat, and LetStat with

(define-ast BlockExpr (Ast Expr) ([#:none annos] [#:many ss]))

(define-ast BlockStat (Ast Stat) ([#:none annos] [#:many ss]))

(define-ast LetStat (Ast Stat) ([#:none annos] [#:just def]
[#:many ss]))

where BlockExpr gets one field annos (whose contents are not a part of the
tree structure) and one field ss (containing a list of statements), while (Ast
Expr) indicates that objects of this node type are subject to being accessed also

through the operations of the Ast and Expr abstractions, whatever they may
be.

3.3.2 Transformations

The information provided to define-ast is enough to generate type-specific
supporting code required by Illusyn’s Stratego-inspired one, some, and all
primitive traversal combinators, which serve as a basis for composing term
rewriting strategies to traverse and transform ASTs. Figure [3.2] provides an

64

3.4. Node Interfaces and View Data Types

overview of the resulting Illusyn architecture for the definition of transforma-
tions on concrete ASTs.

For an example of such a transformation, consider the following ast-rm-
Pass function, for removing any “no-op” (i.e., Pass) statements from statement
sequences. The tree traversal for ast-rm-Pass is defined in terms of a higher-
level topdown strategy combinator, which in turn can be defined in terms of
all and some other combinators. The rewrite function rw does the actual Pass
removal, using Racket’s higher-order filter function to transform the state-
ment list ss. This is an example of a transformation that might be less fragile
upon grammar changes if implemented in terms of a “statement container”
abstraction:

(define ast-rm-Pass
(topdown
(A (ast)
(define (rw ss)
(filter (negate Pass?) ss))
(match ast
[(BlockExpr a ss) (BlockExpr a (rw ss))]
[(BlockStat a ss) (BlockStat a (rw ss))]
[(LetStat a b ss) (LetStat a b (rw ss))]
[_ ast]))))

3.4 Node Interfaces and View Data Types

In defining a node type in lllusyn with define-ast, one automatically gets at
least one interface, consisting of operations reflecting the actual data represen-
tation of the type. Last section’s BlockExpr, for example, gets the accessors
BlockExpr-annos and BlockExpr-ss, and a predicate BlockExpr? for identi-
fying values on which the accessors may be applied.

A define-ast declaration may also request the implementation of addi-
tional interfaces for the declared NDT; BlockExpr, for example, listed Ast and
Expr as additional interfaces to be supported for that type. Any interface so
listed must have been previously declared, with instructions for implementing
it. Each such interface, when declared, gets a set of operations similar to an
NDT’s, as well as a dedicated “data representation.” However, the NDT-like
appearance of the interface is mere illusion in that no dedicated storage data
type gets defined; instead, compatible NDTs are used for storage.

As Illusyn’s node interfaces are effectively abstract data types (i.e., opaque,
named “sorts” and associated operations) that define views (or projections)
into the data of some underlying types, we use the term view data type (VDT)
to refer to them.

While the functions of an NDT operate on known data types (with the
exception of predicates, which accept any argument), lllusyn’s VDT field ac-
cess functions are single-dispatch generic functions, dispatching dynamically
based on the type of the first argument. To support pattern matching, Illusyn
implements exactly one view per VDT. A view implementation need not by-
pass the abstraction defined by the VDT interface; Illusyn implements each
view as a syntactic transformation targeting VDT operations.

65

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

In Mlusyn, one can declare a VDT using the define-view construct. Such
a declaration must specify the fields of the abstract “record data type,” and
a way to map those fields to the fields of NDTs (or to compute their values
based on NDT field values). That specification is then used to automatically
add support for the VDT for any NDT whose declaration includes the name
of the VDT (unless the specification is overridden for a specific NDT). For
example, to define an Assign abstraction (further discussed in section of
something containing an lvalue and an rvalue, we can write the following,
which merely states that the fields 1v and rv should map to any NDT fields
by name:

(define-view Assign ([#:field 1v] [#:field rv]))
A VDT field may also #:use a different NDT field name in its mapping:
(define-view Assign2 ([#:field 1lv #:use x] [#:field rv #:use v]))

The original field specifications may be overridden in declaring an NDT,
for any of the fields of any of its VDTs. Here, for example, we declare an As-
signExpr NDT whose lvalue is exceptionally in a field named x. We therefore
indicate that the abstract accessor Assign-1v should return the same value as
the concrete accessor AssignExpr-x, provided that the receiver indeed is an
instance of AssignExpr:

(define-ast AssignExpr ([Assign ([#:field 1lv #:use x])1])
([#:just x] [#:just rv]))

Currently, in Illusyn, mappings between VDTs and node types are specified
separately for each abstract field (of a VDT), and there are two ways to specify
them: (1) the #:field keyword indicates a field that is mapped by name;
and (2) #:access indicates a field mapped using provided getter and setter
functions.

For an example combining both kinds of field specifications, consider the
following listing showing definitions of Ast, Expression, and Literal. Ast is
defined to be a VDT for node types that contain a dictionary of annotations in
afield named annos. The Ast abstraction is then used in defining an Expr VDT
of typed expressions, whose type information is actually stored in their nodes’
'type annotation rather than a field. One kind of Expr is a literal expression
Lit, containing literal data:

; AST nodes have an annos field (with a non-AST value) for annotations
(define-view Ast ([#:field #:none annos]))

; Utility functions to get/set type from annos (indexed by symbol 'type)
(define (get-type ast)

(hash-ref (Ast-annos ast) 'type #f)) ; default to a false value
(define (set-type ast t)

(set-Ast-annos ast (hash-set (Ast-annos ast) 'type t)))

; Expressions have types, obtained from the Ast annotations
(define-view Expr ([#:access #:maybe type get-type set-type])

66

3.4. Node Interfaces and View Data Types

NameT Var Lambda BlockExpr Let BlockStat Return

Let?
Let
Let-def
set-Let-def
Let-ss
set-Let-ss

StatCont?
copy-StatCont
StatCont-ss
set-StatCont-ss

IdRef?

copy-IdRef
T ?
ype IdRef-id

set-IdRef-id

Figure 3.3: An abstract syntax hierarchy that captures not only grammatical
relationships, but also common structure in node types. Rectangles denote
NDTs, whereas ellipses denote VDTs. Only some of the operations (marked
opns) associated with the types are shown.

#:also (Ast))

; Literals have the Expr view
(define-ast Lit (Expr) ([#:none annos] [#:none dat]))

In the above, we give the Expr VDT a field containing the type of the expression
(if known). Expr’s #:access to that information is defined in terms of the two
functions get-type and set-type; the former retrieves the annotation from an
Ast “node,” whereas the latter sets it (with functional update). The functions
are implemented in terms of Racket’s hash operations, and the Ast VDT’s
annos field access (generic) functions.

The Expr definition’s #:also (Ast) clause means that any NDT imple-
menting Expr should also implement Ast. Illusyn’s tracking of such de-
pendencies makes it possible to abstract over VDTs in specifying them, by
declaring that a VDT encompasses other VDTs. When generating code for an
NDT, its VDT dependencies are collected transitively, and an implementation
is emitted for all of them. As duplicates are ignored, and implementation
specification overrides can only be given for the NDT, there is no ambiguity
regarding implementations (thus avoiding the “diamond problem” associated
with multiple inheritance).

Figure [3.3|illustrates the idea of having multiple interfaces to choose from
per node type, on a case-by-case basis, according to which abstractions seem
most convenient for a given transformation. One could also express a hi-

67

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

erarchy similar to the pictured one in terms of any host-language support
for multiple inheritance, but in Illusyn any define-ast-defined node “hierar-
chy” is flat, with VDTs providing any subtyping-style abstraction, and macros
providing code reuse by emitting VDT-related code into structure definitions.

3.4.1 Limits of the VDT Illusion

Since the goal is for VDTs to support commonality-capturing abstractions,
and such abstractions necessarily only tend to include the “least common
denominator” of encompassed concrete types, we naturally allow VDT-to-
NDT mappings to be non-surjective. That is, a VDT may contain only a subset
of the information of a concrete node. Thus, a VDT essentially defines a “sum
type” of the relevant parts of the values of every one of the set of NDTs for
which a mapping has been defined.

The illusion of VDTs being like concrete types necessarily breaks due to
their possible partiality (of information), which means that there generally
cannot be a constructor for a VDT. Instead, Illusyn provides what we call a
copy function for VDTs (and also for NDTs, for consistency). A copy function
is like a constructor in that it accepts (as arguments) the initial values of the
fields of the object to be constructed, in declaration order. However, it also
takes a “prototype” object serving two purposes: (1) it specifies the concrete
type of the object to be constructed, and (2) it provides any data that the VDT
does not concern. For example, if we defined a StatCont abstraction as

(define-view StatCont ([#:field ss]))

and listed it as supported for BlockExpr and the other statement-sequence-
containing NDTs of section 3.3} then we might modify the ast-rm-Pass func-
tion to use the newly defined VDT’s copy-StatCont function (with the pro-
totype object ast) to incorporate the modified view contents into a new AST
node. That is, if we match any statement container node, then we make a new
one with a rewritten list of statements:

(match ast
[(StatCont ss) (copy-StatCont ast (rw ss))]
[_ ast])

As an exception to our earlier characterization of VDTs as “sums” of NDTs,
Mlusyn also supports another dimension of VDT partiality. For any VDT
declared as #: partia an implementing NDT may specify a #:predicate
that dynamically determines which of the NDT values have mappings with
respect to the VDT. This ability to guard VDT membership with a predicate
adds expressiveness, for example allowing us to state that an empty sequence
of statements is a non-operation:

(define-view NopStat () #:partial) ; non-operation
(define (nop? ast) (null? (SeqStat-ss ast)))
(define-ast SeqStat ([NopStat (#:predicate nop?)]) ([#:many ss]))

2We require the #:partial declaration, as this feature involves some overhead, due to a
#:partial VDT’s predicate itself having to dispatch to an NDT-specific predicate.

68

3.5. Algebraic Views for Pattern Matching

; Define DeVar match pattern ; Use DeVar for matching
(define-match-expander DeVar (match (DefVar 'x 'int (IntLit 5))
(syntax-rules () [(DeVar id t)
[(_ id t) (or (DeclVar id t) (list id ©)1)

(DefVar id t _))1)) ; => '(x int)

Figure 3.4: Defining (with define-match-expander) and using (within a
match expression) a custom pattern matching form DeVar in Racket, for match-
ing either DeclVar and DefVar objects and their common fields. The id and t
identifiers within the syntax-rules expression are expected to bind patterns
to be matched against field values. Here, the or form also constitutes a pattern,
one that matches if either of its sub-patterns match.

3.5 Algebraic Views for Pattern Matching

Mlusyn’s AST nodes by their nature already have an algebraic term represen-
tation, due to Racket structures being used to represent them. Illusyn addi-
tionally exposes an algebraic “data representation” for each VDT “instance,”
to make it possible to pattern match either directly against the concrete data
structure or any of its abstract representations. In essence, we get the ability
to view one data structure as if it were another, in addition to being able to
operate on it as if it were another.

We use the term view to refer to algebraic data representations realized
through ADT operations (without knowledge of actual underlying structure).
This appears to fit Wadler’s original definition of the term, which states that
“a view specifies how any arbitrary data type can be viewed as a free data
type” [189]. In the Illusyn case, though, each view has a direct mapping to
its corresponding VDT (as derived from the VDT name and the order of its
declared fields), and it is only the mappings between abstract and concrete data
types that must be specified by the program-transformation programmer.

As discussed in section 3.4, a VDT may contain only a subset of the infor-
mation of a concrete node. Views are “complete,” however, in that due to the
direct view-to-VDT mapping, a view includes all of the data of its VDT, this is
in line with Wadler’s requirement of an isomorphism between “viewed” and
“viewing” types for well-defined views [189].

The Racket pattern matcher has the necessary “hooks” to enable views
to be implemented. Specifically, the set of patterns recognized by match can
be extended by defining a match expander [168]], which is essentially a macro
that transforms patterns; the semantics of a new kind of pattern is defined by
its translation to existing ones. Figure [3.4|shows an example of defining an
expander and then matching input against its pattern.

[lusyn’s define-view macro generates a match expander to implement a
view for the VDT being defined. As the view is implemented in terms of the
abstraction provided by the VDT, it works for all concrete types associated
with the VDT. For section B.4ls Assign VDT with the fields 1v and rv, the
generated view implementation would be roughly as shown below. For its
patterns to match, the Assign? predicate must hold for the matched value,
and the getters Assign-1v and Assign-rv, applied to the value, must produce

69

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

values matching the sub-patterns 1v and rv, respectively:

(define-match-expander Assign
(syntax-rules ()
[(C 1v rv)
(? Assign? (app Assign-1lv 1lv) (app Assign-rv rv))]1))

Matching against the pattern of a traditional view (i.e., as originally pro-
posed by Wadler [189]) results in an implicit conversion from one data type to
another [53]]; in contrast, a VDT permits multiple possible concrete source data
types for its view, and the “conversion” is more of a partial destructuring of one
of the underlying data types, as defined by its specific getter implementations.

A drawback of the VDT abstraction is that the abstract constructs (e.g.,
StatCont) have no concrete syntax, thus precluding the use of concrete syntax
in patterns and templates, as supported by some language workbenches (e.g.,
Rascal [111] and Spoofax [107]).

3.6 View-Directed Traversals

In most existing solutions with view-like “virtual representations,” the ab-
straction extends to pattern matching, and often also construction, and in
some cases congruence (e.g., Stratego’s “overlays” cover all three). However,
view-like abstraction mechanisms do not tend to support generic traversals
over view data, or—more generally—enumerating the sub-parts of a view
representation. This is rarely a problem, since in most solutions there is no
data in the view data type that is not also reflected in the actual data type,
meaning that a traversal over a concrete data structure will not miss any view
data.

In contrast, a VDT may contain data that is not a part of the underlying
term data structure, in the sense that enumerating a node’s sub-terms with
the concrete-structure-aware one, some, and all operators may not yield all
the sub-terms of the VDT. This is because some VDT data could be stored
in a #:none field, computed on demand (based on information in the node),
or even stored entirely outside the node data structure (probably indexed by
some information in each node).

The possibility of node types and VDTs having different tree structure
(with different information content) introduces ambiguity to traversals. For
example, the Expr VDT of section stores its data in the annos fields of
concrete nodes, whose AST node count is declared as #:none. When inspect-
ing a node using the Expr view and operations, the 'type annotation looks
structural; however, a generic traversal such as the one shown in section S
ast-rm-Pass would not visit such view “structure.”

Some use cases may call for traversing a particular view or set of views
instead of (or in addition to) traversing the concrete data structure directly,
or even for carefully switching between views during traversals. For this
reason, in Illusyn, the VDT abstraction extends from the local inspection-or-
transformation contexts of AST traversals to the traversal-directing strategies
themselves; the ambiguity cannot be resolved transparently, however, and we
require explicit directing of traversals into views as desired.

70

3.7. Macro-Based Generation of APIs

[llusyn enables view-directed traversals by allowing any VDT to be de-
clared as #:traversable. That causes generation of additional support code,
which enables the use of make-view-one and similar macros to instantiate
view-specific variants of the one, some, and all primitive strategy combina-
tors. Any included higher-level combinators that use such primitives take
optional arguments for overriding the default behavior, which is to use the
(generic) one, some, and all operations to process traversable sub-objects.
Illusyn’s topdown strategy, for example, is implemented as

(define (topdown s [all all])
(rec x (<* s (all x))))

where: the argument s is a sub-strategy to apply; the optional argument all
has the top-level-bound, structure-traversing all strategy as its default value;
rec binds a strategy for recursion (as in Stratego); and <* combines strategies
sequentially (like ; in Stratego).

As an example of a view-directed traversal, we might redefine the Expr
VDT of section [3.4] to be #:traversable, allowing us to invoke make-view-
all to get an Expr-specific variant of the all combinator. We might then use
the resulting Expr-all combinator together with all to define a topdown tree
rewrite rw-tree, traversing both concrete sub-terms and any type annotations
in order to set all appearing type names to 'int:

(define-view Expr ([#:access #:maybe type get-type set-type])
#:also (Ast) #:traversable)
(define-ast NameT (Ast) ([#:none annos] [#:none id]))

(define Expr-all (make-view-all Expr))
(define (Expr+all s)
(<* (when-rw Expr? (Expr-all s)) (all s)))

(define (rw ast)
(if (NameT? ast) (set-NameT-id ast 'int) ast))
(define rw-tree (topdown rw Expr+all))

The when-rw combinator makes the specified strategy conditional on the spec-
ified predicate, reverting to the identity strategy when the predicate does not
hold. Thus, Expr+all will first visit any Expr “view children” (where applica-
ble), and then all the natural children.

3.7 Macro-Based Generation of APIs

The Illusyn implementation builds heavily on Racket’s support for macros and
generic interfaces. Macros are used firstly to implement the domain-specific
sub-language (such as define-ast and define-view) to support declarative
specification of AST “recipes,” and secondly to do all the necessary code gener-
ation for AST API definition and implementation within the Racket language.

Generic interfaces (as declared with Racket’s define-generics construct)
enable the definition of operations that span different structure types, with dy-
namic dispatch to specific implementations; we use the term generic method for

71

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

operations of generic interfaces NDT-specific implementations of printing,
equality comparison (with regards to Racket’s equal? relation), serialization,
and strategic term rewriting support, for example, are all macro generated by
Mlusyn, and defined as generic methods of the specific structure type. Each
VDT also gets its own generic interface, and node-type-specific VDT support
code can thus be treated similarly.

For code generation, Illusyn uses Racket’s built-in facilities for Racket-code
manipulation, in an idiomatic way. For an idea of what such code-generating
code looks like, consider the function make-view-pattern below, which is a
simplified version of the one that the define-view macro invokes internally
to generate match expanders such as the Assign one in section The
function takes a view identifier and list of field identifiers, and returns syntax
for defining the corresponding match expander:

(define-for-syntax (make-view-pattern view-id fld-ids)
(define name (syntax-e view-id))
(with-syntax ([pat-name view-id]
[view? (format-id view-id "~a?" name)]
[(get ...) (for/list ([id fld-ids])
(format-id view-id "~a-~a"
name (syntax-e id)))]
[(pat ...) (generate-temporaries fld-ids)])
#' (define-match-expander pat-name
(syntax-rules ()
[(_ pat ...)
(? view? (app get pat) ...)1))))

Macros provide a full-fledged interface to the Racket language implementa-
tion, and indeed large parts of Racket itself have been implemented as macros.
This means that it is possible for custom, macro-defined language to have nota-
tion that is indistinguishable from “native.” Racket macros also offer “proper”
abstraction over syntax, in that they respect lexical scope (by default); i.e.,
they preserve the meaning of variable bindings and references during macro
expansion [52].

A key mechanism for macro cooperation in Racket is its support for general
compile-time bindings, i.e., binding of identifiers to arbitrary compile-time in-
formation [73]. The mechanism is particularly convenient for maintaining
scoped, hygienic “name tables” at macro-expansion time, and Illusyn relies
solely on it for its cross-macro communication of information about VDTsﬁ
Specifically, the define-view macro stores information about the VDT being
defined, and binds it by name in order to make it available to the define-ast
macro; the latter can then look up the information in order to implement the
VDT mappings for any node type that lists the VDT as supported.

Other implementations of views have previously been described. Okasaki,
for instance, has proposed a way to add views into Standard ML, defining the

3For additional implementation flexibility, llusyn does not always define generics in terms
of define-generics; instead, it in some cases directly uses the underlying Racket facility of
“structure type properties” to implement generics, by storing a type-specific function table into a
property. We speak of generic interfaces and methods also in these cases.

*Macro systems without general compile-time bindings might instead explicitly maintain a
(mutable) name table in their macro-expansion-time state.

72

3.8. AST Abstraction Scheme

proposed semantics via a source-to-source translation into “plain” Standard
ML [134]. As Standard ML lacks an extension mechanism, implementing
Okasaki’s solution would involve modifying the language implementation, or
writing an external source-to-source compiler. Racket’s macros have provided
us with a convenient way to embed our solution within the language, with a
result that is integrated and compatible with existing Racket tools.

As demonstrated earlier, e.g., by Kiama [[158]] for Scala, it can take relatively
little code to create a capable language processing toolkit based on domain-
specific language embedding into a general-purpose host language. In the
Mlusyn case it is macros that are the enabler for embedding, and the full-
featured host language complements the capabilities of the library itself. For
example: while Illusyn provides an AST data structure, Racket must provide
any others, such as lists, sets, and dictionaries; Racket’s dynamically scoped
variables appear to be particularly useful for tracking a transformed language’s
scope; and Racket has sufficient features and libraries for implementing an
entire compiler, and its integration with other applications.

3.8 AST Abstraction Scheme

Macros can be used to define syntax for DSL constructs for specifying desired
AST node data content, which we assume is specified by listing named data
fields, possibly with some attributes. There can also be syntax for specifying
commonalities, which might entail having the same data fields, or the same
data content after some extracting, combining, or translation.

With those things specified in a DSL, macros can also be used to generate
the implementations of both the node data structures and their commonality-
capturing abstractions. Efficientimplementations thereof may require intricate
language-dependent code, which can hopefully be generated with macros, and
which the language can hopefully support in terms of run-time features. At
least we can hide such details under simple interfaces, in order to enable
client code to be written in relatively primitive and portable language. We
can make the interfaces uniform in style to also encourage building of further
abstractions on top; any macros we write will know what kind of operations
and naming to assume.

Our AST design builds on the idea that almost no matter what kind of type
definitions we are generating for purposes of AST data representation, we can
hide them within one or more abstract data types. An abstract data type (ADT)
has a public name, a hidden representation, and operations to create, combine,
and observe values of the abstraction [38]. At the interface level, adding a new
node or abstraction merely involves adding a collection of operations for it.

The operations can be generated as ordinary functions, and any represen-
tational types (within an abstract type) might be record types or classes or
type-name-tagged tuples with the requested fields. For example, for the AST
node type Var with the field id, we would at least want operations like a
constructor make_Var, a predicate is_Var, and a field accessor Var_id, with
is_Var to be used for guarding access to Var’s data. For C++, for example, we
might generate

struct Var : AstData { // AstData is polymorphic
explicit Var(std::string const& id) : m_id({id) {}

73

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

std::string m_id; };
// Ast is an alias for std::shared_ptr<AstData>
Ast make_Var(std::string const& id) {

return std::make_shared<Var>(id); }
bool is_Var(Ast const& ast) {

return typeid(*ast) == typeid(Var); }
std::string Var_id(Ast const& ast) {

return dynamic_cast<Var&> (*ast).m_id; }

In a statically typed language our collection of AST node types could all be
given the same static type (e.g., Ast, above), or alternatively some groups of
node types could be associated with different ADTs to impose type constraints
at the interface level. We consider all node types as technically unrelated,
and establish any relationships by generating (for an ADT) additional generic
operations that span multiple (or no) node types, provide access to certain
(common) portions of available information, and together constitute an inter-
face similar to actual nodes’ interfaces.

For example, we might abstract over any node types representing assign-
ment operations (e.g., AssignStat) by generating Assign operations capable
of accessing any such object type’s lvalue and rvalue expressions. Such oper-
ations require dynamic dispatch to a specific type’s operations, as we want to
support an open-ended set of Assign-implementing types. We can achieve that
with a dispatch table of some kind, and in C++ we can get a language-provided
“vtable” by making Assign an abstract class of pure virtual functions:

struct Assign {
virtual Ast Assign_1lv(Q)
virtual Ast Assign_rv(Q)
I
struct AssignStat : AstData, Assign {
explicit AssignStat(Ast const& lv, Ast const& rv)
m_1lv(lv), m_rv(rv) {}
Ast Assign_lv() { return m_lv; }
Ast Assign_rv() { return m_rv; }
Ast m_lv, m_rv; };
// definitions for make_AssignStat, is_AssignStat,
// AssignStat_lv, and AssignStat_rv omitted
// (they are similar to Var operations)
bool is_Assign(Ast const& ast) {
return dynamic_cast<Assign*>(ast.get()) != nullptr; }
Ast Assign_lv(Ast const& ast) {
return dynamic_cast<Assign&>(*ast).Assign_1v(Q); }
Ast Assign_rv(Ast const& ast) {
return dynamic_cast<Assign&>(*ast).Assign_rv(Q); }

0;
0;

Where the host language does not support incremental definitions, macros
can collect information about abstractions into expansion-time state, and then
emit full definitions at once. For example, C++ does not have open classes,
but we can list Assign as a superclass for AssignStat if we have seen Assign’s
specification before AssignStat’s.

74

3.8. AST Abstraction Scheme

While there are host-language-influenced implementation choices to make
in realizing abstractions such as Assign, altering those choices can be cheap
if the implementations are generated from declarative specifications. The
challenge is in devising ways to specify the implementations, and preferably
once per abstraction (not once per concerned node type). In Illusyn, we
support name-based mapping of abstract-to-concrete fields, for example, and
that would be sufficient for the 1v and rv fields of Assign and AssignStat
here; more flexible ways of specifying relationships could be devised.

Having arranged for the generation of uniformly named operations for
both objects and abstractions, one can start devising other abstraction-friendly
facilities (syntax or operations) expressed in terms of those operations. Two
prominent examples of such facilities in Illusyn are generic tree traversals and
pattern matching.

Existing AST generators tend to support abstraction over specific AST
structure in the form of generic traversals of some kind. Stratego [28], for
example, provides primitive traversal operators (one, some, and all generic
functions) for all abstract syntax tree node types. We can also express such
traversal primitives in terms of our data access functions, whether for a node
or an abstraction. Traversals over actual or abstract structures can thus remain
fairly general until data of interest to analyze or transform is encountered.

Analyses and transformations within ASTs are often performed by pattern
matching to identify a particular subtree, and then replacing the subtree with
an information-enriched or transformed one. Programming against ADTs
need not mean the loss of pattern matching.

To support pattern matching—with uniform treatment of nodes and ab-
stractions—we can generate macro definitions that translate match patterns
into invocations of data access operations. As an example, consider the follow-
ing function fm, given in Racket syntax (due to the lack of pattern matching
syntax in C++); the function uses a pattern match expression to record the
identifier id of any argument variable that appears on the left-hand side of an
assignment:

(define (fm ast) ; (-> Ast? void?)
(match ast ; against the following clauses
[(Assign (Var (? arg? id)) _) (add-mut-arg! id)]
[~ (void)1))

In fm, the recording is done by calling add-mut-arg!, for L-value Variable
identifiers indicated by the predicate arg? (the (?) pattern matches
according to the specified predicate, whereas the _ pattern matches anything).
The above (Assign) pattern refers to the Assign abstraction, whereas
the (Var) pattern refers to the concrete object type Var, but both patterns
translate in a uniform way. A C++ translation of fm (in terms of Var and Assign
operations given earlier) might for example be

MGL_FUNC void fm(Ast const& ast) {
Ast temp23;
std::string temp29;
is_Assign(ast) ?
((temp23 = Assign_lv(ast)),
(is_Var(temp23) ?

75

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

((temp29 = Var_id(temp23)),
(is_arg(temp29) ? add_mut_arg(temp29) : fm_£16()))
fm_£160)))
fm_£f16Q);
}

MGL_FUNC void fm_f16() { }

Even Magnolisp—a small research language implemented with Illusyn—
supports first-order functions and conditional expressions. Thus, while its
language is not rich enough to host Illusyn’s entire feature set, it is capable of
using AST APIs defined according to the scheme described here; in fact, the
above C++ translation of fm was produced by the Magnolisp source-to-source
compiler.

3.8.1 Host Language Extensibility Requirements

Implementing the described scheme requires a macro system of moderate
sophistication. In particular, there must be support for programmable macros
with access to macro-expansion-time state, and it must be possible to generate
top-level definitions. This rules out a large portion of languages with macro
systems, as many of them only support expression generation; still, at least
the Honu [147] language has the required support, as do many flavors of
Lisp, and easier-to-implement models of macro expansion of the required
power are being discovered [68]. Preprocessor-based implementations of the
required macro facilities are also possible, as demonstrated by sweet.js [48] for
JavaScript.

For best results, the host language should also have a general, extensi-
ble pattern matcher (one that also supports non-AST data types). There
are languages (like F# and Scala) featuring integrated, extensible pattern
matching. Racket’s extensible pattern matcher, in turn, has a macro-based
implementation [168], which is an option for languages that otherwise lack a
suitable matcher.

For implementing views as macros, having language support for macro-
generating macros allows for more implementation options, but is not a re-
quirement. In discussing match pattern translation above, we used the term
“macro” loosely, to mean a syntax transformer function with the same signa-
ture as macros have; a pattern transformer function need not be bound as a
macro, if there are other means for looking it up for pattern translation. Allow-
ing macro-binding macros can pose parsing challenges in languages without
a uniform syntax (e.g., formed out of S-expressions) [2}; [147].

3.9 Related Work

Racket’s match [168] cooperates with structure type definitions in such a way
that views are already supported for structures. In pattern matching against
a structure, the data representation of one of its supertypes may also be used,
even if the supertype is semantically abstract. For example, we may use an
Expr pattern to match against a Var value, where Expr is an abstract supertype
without an exposed constructor:

76

3.9. Related Work

(define-syntax-rule (abstract-struct n more ...)
(struct n more ... #:constructor-name ctor))

(abstract-struct Expr (t))

(struct Var Expr (id))

(match (Var 'int 'x)
[(Expr t) t]) ; => 'int

Ilusyn’s AST node type relationships are not expressed in terms of structure
supertype declarations, leaving more flexibility with regard to what relation-
ships are expressible.

In Wadler’s views mechanism [189], each view has a “data type” with one
or more algebraic variants, and a bi-directional correspondence to another
data type; the conversions in and out of the data type are specified similarly
to functions. The bi-directionality enables a view’s algebraic variants to appear
both in patterns and expressions. In our case there’s exactly one variant per
VDT, and it can appear in patterns, but has no constructor; instead, there is a
copy function for prototype-based construction.

Wadler suggests implementation either by: (1) having a real data type, and
inserting calls to conversion functions in the appropriate places; or (2) avoiding
the data type, instead translating view pattern and constructor appearances
into expressions concerning the “viewed” type (with patterns translated into
invocations of a higher-order viewcase function). The latter approach resem-
bles ours in that a view’s data type is mere illusion, and its data access is
actually to an underlying data type. In our case, though, a VDT can span mul-
tiple underlying data types in an open-ended way, meaning that we cannot
translate away dynamic dispatch to type-specific operations.

Okasaki has proposed a views extension for Standard ML, defining its se-
mantics via source-to-source translation [134]; our implementation is based
on macro expansion, which is also a form of source-to-source translation.
Okasaki’s views consist of “viewtypes” and one-way “view transformations.”
View representations can only be used for pattern matching, not for construc-
tion; view transformations are implicitly invoked to convert from the concrete
type to the view type, for matching against view patterns. Okasaki’s proposed
translation involves view-specific ML datatypes; in our solution underlying
data types are used, and it is operations that must be generated for a VDT.

Stratego’s “overlays” [179] are also integrated into a program transforma-
tion toolkit. They are like Wadler’s views in that an overlay is an abstract
algebraic variant which is isomorphic with its underlying representation (of
real algebraic variants). Overlays are defined as equations between representa-
tions (possibly involving other overlays), and the mappings are not necessarily
total; data not reflected in an overlay must map to constant values of the under-
lying representation, while with VDTs such missing pieces of data are copied
from a prototype object. One motivation for the Stratego feature is to enable
overlaying a language on top of a more generic representation language, while
VDTs aim to make it convenient to have multiple similar “representations” for
the types within a single AST hierarchy.

Tom [128] can be used to define a term representation for existing ASTs, for
purposes of pattern matching; the same facility could be used for declaring
multiple representations for the same underlying type. Tomis a tool for adding

77

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

a pattern matching sub-language to an existing language, implemented as a re-
stricted source-to-source compiler that only partially parses the host language
(for easier adaptation for multiple hosts). The sub-language includes a %¥match
construct and declarations for term types and variants. Racket’s match and
define-match-expander form a similar sub-language, implemented in terms
of a general-purpose compile-time syntax transformation system (i.e., macros)
rather than a dedicated compiler.

Scala supports pattern matching on both concrete data types (with “case
classes”) and abstract data types (with “extractors”) [53]]. These Scala facilities
are comparable to Racket’s built-in support for matching against structures
and defining match expanders, respectively. A major difference is that an ex-
tractor defines a run-time data conversion, whereas a match expander defines a
compile-time pattern transformation. An extractor is suitable for VDT match
pattern implementation in that its unapply method (as applied in patterns)
permits multiple source data types (e.g., based on subtyping or overloading).

F# has “active patterns” [165] as a pattern matching abstraction, one that
is similar to extractors. F# includes dedicated syntax for “structured names”
of patterns, which may be defined separately from data types. A structured
name definition requires an associated function expression to specify how to
convert “viewed” data to “viewing” data.

JMatch [121] extends Java with pattern matching support. Its interfaces
may declare “pattern methods,” allowing data-type-specific implementations
of named patterns; this is more flexibility than is required by our VDT imple-
mentation, where each view pattern has a single implementation, but where
the expanded pattern may include calls to generic methods of an interface.
JMatch patterns also support iteration (over a set of matches), which can be
convenient in implementing tree traversals, for example. JMatch should be a
good basis for further language extensions to support declarative AST imple-
mentation.

The functional programming concept of “lenses” is related to VDTs in that
a lens can also provide a view into partial data (of some larger structure). A
difference is that a VDT is a type, whereas a lens is a value. For any field
of a VDT, a lens can be instantiated in terms of the field’s (purely functional)
accessors. Lenses might complement traversals by providing a composition-
friendly way to access and modify AST sub-parts in a local context, without
explicit de- or re-construction of nodes.

Some of the domain-oriented languages (like Rascal and Stratego) have
features like generic traversals and pattern matching built-in, allowing ASTs
to be expressed concisely, without additional code generation being required.
However, to date these tools have not provided much support for exposing
multiple interfaces per node type, or traversals guided by interfaces of choice.
Stratego’s overlays are one exception; with them, alternative representations
can be exposed, and traversing the underlying representation also results in
traversing any overlays, making choice of interfaces largely unnecessary.

Kiama explores the advantages and constraints of embedding a program
transformation toolkit into the Scala language [159]. It makes heavy use of the
specific facilities of its host language, including features such as case classes,
pattern matching, implicit conversions, extractors, lazy values, call-by-name
parameters, and operator notation. By contrast, our aim has been to devise
a design that requires no exotic features from the run-time language, instead

78

3.10. Discussion

shifting responsibilities onto the macro system.

Kiama’s embedding approach does not enable static correctness checking
beyond that which is provided by the host language; Racket embeddings, on
the other hand, have no host language type system to exploit, but domain-
specific static analysis is possible during macro expansion [169]]. Illusyn’s
static semantics enforcement is limited to basic checks of consistency between
NDT and VDT declarations.

3.10 Discussion

The Magnolisp compiler has so far been the only application for Illusyn, al-
though we plan to adopt the approach (in some form) in our experimental
compiler for the general-purpose Magnolia programming language, which
will be a more realistic test of its usefulness. While there have been challenges
relating to infrastructure, architecture, and algorithms in implementing Mag-
nolisp, writing the required transformations with Illusyn has not in itself been
difficult. The major uses of Illusyn in Magnolisp are: construction of nodes
during parsing in the front end; analysis and language-independent transfor-
mations in the middle end; and C++ translation and pretty printing in the
back end.

3.10.1 Technology Choices

Racket is a modern functional language, and we have found it to be a suit-
able and complementary host for our domain-specific program transformation
sub-language. In programming program transformations, we have felt em-
powered by the combination of Illusyn and particularly its host language’s
module system and pattern matching and macro facilities.

In developing Illusyn’s library-based DSL, we have not felt that we have
needed to make language design tradeoffs, compared to what would have
been possible had we instead created a special-purpose external DSL for the
domain; we do not know if this is due to our lack of imagination or design
sense, however.

As discussed in section there presently are few languages beyond
Lisps which have the macro capabilities required by our AST generation ap-
proach, but it might nonetheless have applications beyond those languages.
For instance, while we have only discussed macro-based implementations,
more generally extensible languages such as mbeddr [187] and Sugar] [55]
should easily be able to host a variant of our scheme. We also see macro sys-
tem reuse as a feasible option for newly designed languages to incorporate a
sufficient extension facility, with more reuse potential than when inventing a
custom macro system.

We have designed our AST generation scheme to require little from the
target core language (to which macros must ultimately expand). We did this
as we believe macro systems (and their macro languages) have the potential
to serve as cross-language platforms for reusable language features. A macro
system can serve as such a platform if:

e The macro system supports integration with other languages. The
language-independent syntactic-macro processor Marco [117] is one ex-

79

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

ample of such a system, and Racket’s macro system can also be adopted
for other languages, with some constraints [88].

e The language of the macro system is used for macro programming, even
though it may be very different from the target language. The Terra [47]
language, for example, incorporates a separate language (i.e., Lua) for
its meta-programming, while Magnolisp uses Racket as its macro pro-
gramming language.

o There is a cross-language subset of core language that can be targeted
in translating reusable constructs. Magnolisp, for example, shares some
core language with Racket, which allowed the fm function of section
to reuse Racket’s match macro as is.

3.10.2 Usability and Abstraction Power

Our scheme for extragrammatical abstraction in ASTs has proven to be work-
able: as described in section[3.4]in particular, we have implemented a number
of ways to declare abstractions for nodes, and the design has readily accom-
modated incremental implementation of new declaration syntax. Most often,
such additions have lead merely to generating additional functions, which is
also unlikely to break existing client code. We recall only one instance where
we have ended up with a naming conflict with newly generated code: we
started generating equality relations for NDTs, but we already had a manually
implemented Id=? operation (of a different semantics) for our Id NDT.

VDTs are our sole mechanism for declaratively expressing relationships
between AST node types. VDTs subsume subtyping with respect to what
type hierarchies can be defined. We have used them extensively for ex-
pressing grammar-derived relationships, in order to process Expressions and
Definitions generally, for example.

We have only occasionally used VDTs for expressing non-grammatical
relationships; usually, when we have, the motivation to definea VDT has arisen
from the desire to avoid duplication of similar case clauses inmatch expressions
and other conditionals. One example of such case clause avoidance was the
StatCont use of section 3.4l

A common VDT use case within Magnolisp is to abstract over the distinc-
tion between expressions and statements, for abstract syntax that has both
variants. As an example, consider the VDT If, which abstracts over “two-
armed” conditionals, whether statements or expressions. While the distinc-
tion between statements and expressions matters e.g. during type inference
(since expressions are typed), it can be ignored when optimizing away con-
stant condition checks. The definition of If and a function rw performing
the optimization, extracted from a version of the Magnolisp compiler, are as
follows:

(define-view If ([#:field c] [#:field t] [#:field e]))
(define-ast IfExpr (Ast Expr If)

([#:none annos] [#:just c] [#:just t] [#:just e]))
(define-ast IfStat (Ast Stat If)

([#:none annos] [#:just c] [#:just t] [#:just e]))

(define rw

80

3.10. Discussion

(bottomup
(A (ast)
(match ast
[(If c t e) (cond
[(TRUE? c) t]
[(FALSE? c) e]
[else ast])]
[ast]))))

From a user’s point of view, our DSL syntax is not especially easy to re-
member, but the underlying scheme is conceptually simple: pick your storage
representations first (with define-ast), focusing on what information must be
stored; then, almost orthogonally, pick additional data types to expose (with
define-view), focusing on what transformation tasks will be required. From
a DSL implementor’s point of view, the scheme is similarly simple in concept:
treat both NDTs and VDTs as abstract data types, and generate a uniform (to
a possible extent) set of operations and a single view for each.

A complete illusion of node types and VDTs being alike cannot be at-
tained. For one thing, some views are even conceptually abstract, and thus
cannot have a constructor (e.g., consider a non-terminal such as Expr that does
not exist concretely). We instead generate copy functions for concrete nodes
as well, to make it possible to lessen the client code impact of a node type
being turned into a VDT; this still does not complete the illusion, however, as
something must ultimately be constructed for prototype-based instantiation
to be possible. Another aspect of broken illusion is traversals, where there
is fundamental ambiguity in choosing how to traverse into a multi-interface
node.

Our attempt at uniformity between concrete and abstract nodes does at
least result in better API stability than with Racket’s structure subtyping. In
the following scenario, for example, the first B will have getters B-a and B-b.
If we split the a field into a supertype A, as in the second definition, then B’s
getter names will change to A-a and B-b. In the third definition, define-ast
generates getters B-a and B-b for B, and changes in B’s A membership do not
change B’s own operations; VDT operations are separate, and in this case A’s
sole getter will be A-a:

(struct A (a))

(struct B; (a b)) (struct B, A (b))

(define-view A ([#:field al))
(define-ast By (A) ([#:none a] [#:none b]))

Our VDT definition support is intended to make it straightforward to
specify common-case abstractions over sets of AST node types, and #: field
and #:access field definitions have covered typical use cases in Magnolisp.
We believe that our general design could accommodate other kinds of field
definitions. For example, one might want an #:access field definition to
alternatively be specifiable as syntax-transforming compile-time functions that
are parametric in information about the concrete structure type being accessed,

81

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

allowing for some variation between concrete implementations, for a single
specification.

The idea of generating interfaces as collections of standalone (possibly
generic) functions seems to be a good match for Stratego-style rewriting with
higher-order functions.

One way in which Illusyn differs from Stratego is that lists (or cons cells,
rather) are not considered as terms for purposes of traversals. Consequently,
a bottom-up traversal does not traverse lists in a reverse order, as might be
useful for certain control-flow sensitive rewrites, for example. Illusyn has
special-case behavior for traversing #:many fields, and list-type field values
are assumed; this also means that there is no support for fields containing sets
or dictionaries of terms, for example. We will revisit this design if necessary,
but one of its advantages is the availability of some static knowledge about
field contents, allowing direct use of Racket’s optimized list operations as
appropriate.

3.10.3 Efficiency

Our abstraction scheme should generally permit a reasonably efficient imple-
mentation, comparable to inheritance-based subtyping: no dynamic dispatch
is required for NDT operations; one level of single-argument dynamic dis-
patch is required for VDT operations, as VDTs represent open-ended sets of
typesﬂ view data type operations manipulate underlying data types directly,
thus requiring no data conversions; and, view patterns are translated away
statically, into concise code with ADT-operation-based data access.

The efficiency of dynamic dispatch, of course, depends on the way it is
realized in terms of the target language. Some languages optimize such dis-
patch, for instance by maintaining “lookup caches” of recently looked-up type-
specific routines, or even “inline caches” [46} 98] of lookup results directly at
call sites; where such language support is available, macros are hopefully able
to generate code to exploit it.

In Ilusyn, the run-time cost of individual VDT field accesses depends on
user-provided specifications. An #:access field access performs arbitrary
computation by definition. However, at least in Magnolisp, #:field access
is the common case, with consistent overhead. VDT getters are particularly
interesting in that they can appear multiple times in a VDT pattern translation
(as shown in section [3.5[s Assign example). Due to the getters’ type-specific
implementation, fetching the value of a #: field involves one generic method
dispatch (which effectively also checks for VDT membership), and an unsafe-
struct*—reﬂﬂ of the appropriate concrete field. In comparison, as of Racket
6.3, a regular structure field access within a match clause entails only a (more
general and potentially slower) unsafe-struct-ref at a statically known off-
set.

5In contrast, if there was exactly one concrete type per VDT, then it would be possible to
make the abstraction zero-overhead, in the sense that macros could replace all VDT accesses with
accesses of the underlying type. Similarly, handling multiple known concrete target types might
also be possible by translating into multiple case clauses, but at the cost of a corresponding code
size increase.

6Qur generated code uses unsafe, type-check-omitting operations where the specific type has
already been established due to generic method dispatch.

82

3.10. Discussion

One place where the cost of internal abstraction over data types shows is
that the VDT copy functions inferred by Illusyn for certain kinds of field spec-
ifications (i.e., where there are both #: field and #:access fields, or multiple
#:access fields) may be of sub-optimal efficiency, involving multiple calls to
Racket’s struct-copy function where one should suffice. This could perhaps
be addressed with more creative #:access specifications. Barring such inno-
vations, one may—at some cost to maintainability—resort to the supported
option of specifying node-type-specific (and optimized) implementations of
copy functions. The define-ast form allows for such overrides for each listed
VDT with an optional #: copy clause.

For purposes of comparing alternative implementations of field access, we
have done basic performance measurements. In case (a), we access a field
shared by Racket structure types via their base type; this is our baseline case,
as the offset of the data within all derived structures is known statically. In case
(b), we use unrelated types, and a conditional to enumerate all the alternatives.
In the (c) case, we fetch via a VDT-defined #:field accessor, and in the (d)
case, we fetch via a field accessor mixed-in as a Racket-object-system trait.
The (a) case is not comparable to (c) and (d) in the sense that only the latter
support “multiple inheritance.” The reported times are in milliseconds, for
fetching the value of a field from 1000 objects, and doing that 10000 times. For
instantiating the objects, we select from either 1, 3, 5, 10, 30, or 50 different
types of objects, which is significant in the (b) case:

1 3 5 10 30 50
(a) via base struct 780 780 784 784 784 780
(b) cond cases 792 952 952 1012 1240 1452
(c) via VDT 1108 1156 1172 1204 1208 1236

(d) via class trait 2108 2112 2112 2116 2152 2172

We observe from the results that: unless the number of relevant concrete types
is unusually large, performance is not a reason to favor VDT access instead
of manually enumerating specific types; and that the overhead of accessing a
class instance field through a method call appears significantly greater than
that of VDT generic method dispatch.

Another aspect of efficiency to consider is code size. In comparison to
plain Racket structure types, Illusyn’s NDTs and VDTs get more operations
generated for them. It is likely that a large portion of the operations do not get
used, but this is also the case with regular structures.

The increase in the amount of code generation is detrimental in at least
two ways: macro expansion takes time; and code footprint may increase. The
first issue can be alleviated by avoiding repeated macro expansion; Racket
includes support for managing modules in a byte-compiled form in which
macro uses have been expanded. Some languages may drop unused opera-
tions (e.g., Magnolisp does), thus avoiding the footprint increase. Racket—to
our knowledge, as of version 6.3—offers no such guarantees, and we try to
avoid code bloat by making the generation of less commonly required opera-
tions optional; for example, we assume that most VDTs will not be traversed,
and require the #: traversable attribute for VDTs that should get the traversal
operations.

83

3. ABSTRACT DATA REPRESENTATIONS FOR ABSTRACT SYNTAX

3.11 Conclusion

There are programming languages (e.g., Scala) that feature support for inter-
faces and reusable implementations, and should thus enable convenient and
concise manual implementation of abstract syntax trees with extensive use of
interface-based abstraction. However, not all languages have such features,
and there has so far been little support for non-OO interface-based abstraction
for AST APIs.

We have presented a scheme for providing AST APIs based on macros, such
that there is support for declaring abstractions over collections of AST node
types. This essentially means that it is possible to define abstract interfaces
for nodes, even when the target language has no concept of interfaces (inde-
pendent of implementations). There are also some advantages over what one
could achieve in terms of traditional object-oriented language features: each
interface gets syntax for pattern matching; interface implementations need not
be hand written, but are provided from declarative specifications; and conse-
quently, it is feasible to provide type-specific, optimized implementations of
commonly used operations; and similarly, it is possible to radically modify
implementations without modifying client source code.

The language that we have so far devised for declaring abstractions is not
especially powerful, but it is sufficient for expressing both grammatical rela-
tionships (with terminals “inheriting” fields from associated non-terminals)
and purely structural commonalities.

One of our more unusual goals has been to blur the distinction between
concrete and abstract AST nodes, in an attempt to make the choice between
concrete and abstract types less crucial. Towards this end we have adopted the
idea of views to provide a representation for abstract types. In most existing
view-utilizing solutions each view corresponds to a specific data type, whereas
in our solution a view corresponds to an interface, and may therefore represent
multiple different concrete types. Consequently, traversals over interface-
implementing nodes are ambiguous, and we allow such ambiguities to be
resolved through parameterization of traversals with sub-term-enumerating
operations, while defaulting to traversing over concrete structure.

We have described an implementation of these ideas in the form of a Racket
library named Illusyn. The library contains a collection of higher-order func-
tions enabling concise, composition-supporting implementation of traversals
and rewrites over ASTs; the included functions are designed to interact with
less-general ones that are generated from declarative specifications by the
library’s macros.

Our heavily macro-based implementation scheme requires little from the
run-time language, apart from (preferably user-definable) composite data
types and some support for implementing dynamic dispatch based on con-
crete type; in particular, there need not be support for multiple (or even single)
inheritance, or more advanced constructs such as traits for expressing and mix-
ing in common code across node types. This suggests that other languages
with a suitable macro system could also similarly implement an AST sup-
port library within the language. A preprocessor-based macro system (e.g.,
sweet.js) might enable implementation for languages without built-in macros.

The ideal implementation language would also have a general-purpose
view-like mechanism (e.g., “extractors” in Scala [53], “active patterns” in

84

3.11. Conclusion

F# [165]], or “pattern methods” in JMatch [121]), or other suitable hooks into
its pattern matching facility. Otherwise, one can resort to creating a separate,
macro-based pattern matcher with the required hooks [168].

Acknowledgements

This research has been supported by the Research Council of Norway through
the project DMPL—Design of a Mouldable Programming Language. Vadim
Zaytsev, May-Lill Bagge, and anonymous referees have provided useful com-
ments during the writing process.

85

CHAPTER

Permission Management

In this dissertation, I use failure management as an example language tech-
nology use case. It is a particularly relevant concern for always-on, resource-
constrained embedded devices, intended to run for long periods of time with-
out supervision.

Mobile platforms have popularized security models based on fine-grained
permissions, making the lack of required permissions an additional poten-
tial cause of failures affecting niche platforms. Permissions are more of an
issue of error prevention than handling, as permissions can in a typical case
be assumed granted for a running application, if they have been requested.
Getting permission requests right, in turn, is a matter of having the necessary
(static) information about product configurations, and language support can
be helpful here, too.

In this chapter, we present a language-supported solution for permission
management, intended to automate the required-permission-bookkeeping as-
pect of product configuration management. The idea is to infer the permission
demands of a given software product based on the APIs it uses, rather than to
declare the requirements separately for each product. The inferred informa-
tion can then be fed to the build system as a permission request declaration of
the appropriate format.

The solution is cross-platform, and it assumes that products are composed
in a static-reasoning-friendly programming language. It furthermore assumes
that product compositions are static, and that any (opaque) foreign-language
implementations of operations are annotated with their required permissions.

I presented this paper at NordSec 2013 in Ilulissat [Hasu et al.}, 2013].

87

4. PERMISSION MANAGEMENT

88

Inferring Required Permissions for Statically
Composed Programs

Tero Hasu ANYA HELENE BAGGE

MaGNE HAVERAAEN

Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway

Abstract

Permission-based security models are common in smartphone operating
systems. Such models implement access control for sensitive APIs, intro-
ducing an additional concern for application developers. It is important
for the correct set of permissions to be declared for an application, as too
small a set is likely to result in runtime errors, whereas too large a set
may needlessly worry users. Unfortunately, not all platform vendors pro-
vide tools support to assist in determining the set of permissions that an
application requires.

We present a language-based solution for permission management. It
entails the specification of permission information within a collection of
source code, and allows for the inference of permission requirements for a
chosen program composition. Our implementation is based on Magnolia,
a programming language demonstrating characteristics that are favorable
for this use case. A language with a suitable component system supports
permission management also in a cross-platform codebase, allowing ab-
straction over different platform-specific implementations and concrete
permission requirements. When the language also requires any “wiring”
of components to be known at compile time, and otherwise makes de-
sign tradeoffs that favor ease of static analysis, then accurate inference of
permission requirements becomes possible.

4.1 Introduction

Permission-based security models have become commonplace in real-world,
consumer-faced operating systems. Such models have been adopted mostly

This is a preprint of: Hasu, T., Bagge, A. H., and Haveraaen, M. Inferring Required Permissions for
Statically Composed Programs. In Proceedings of the 18th Nordic Conference on Secure IT Systems
(Ilulissat, Greenland, 18-21 October 2013). NordSec 2013. Lecture Notes in Computer Science volume
8208, 2013, pp 51-66. © 2013 Springer Berlin Heidelberg. Reprinted by permission. Original publication
available at|1ink. springer. com.

89

http://link.springer.com/

4. PERMISSION MANAGEMENT

for mobile OS platform security architectures, partly because smartphones are
high-utility personal devices with privacy and usage cost concerns (regula-
tions and business models have also driven adoption [115]). Smartphones
are also natively third-party programmable (by our definition), and the wide
consumer awareness of “app stores” has made it almost an expectation that
applications (or “apps”) are available for installation in large numbers. While
some smartphone platforms (such as iOSﬂ and Maemo) rely on app store main-
tainers to serve as gatekeepers against malicious (or maliciously exploitable)
apps, many others (such as Android, BlackBerry 10, and Windows Phone)
have permission-based security to restrict the damage that such apps might
cause. Sole reliance on gatekeepers has the drawback that “side-loading” of
apps from another source is then more likely to be prevented by the platform
vendor (as is the case with iO.

A number of different terms are being used for essentially the same concept
of a permission. By our definition a permission is something that is uniquely
named, and something that a program (or rather its threads of execution) may
possess. Possession is required for a program to be allowed to take certain
actions (typically to call certain system APIs), or perhaps even to be the target of
certain actions (e.g., an Android app may not receive certain system messages
without the appropriate permissions [61]]). A common reaction to an attempt
to invoke an unallowed operation is to trigger a runtime error, although the
concrete mechanisms for reporting such errors vary between platforms.

By the term permission-based security model we simply mean a security model
in which access control is heavily based on permissions. We assume at least
API access control such that different permissions may be required for differ-
ent operations; i.e., there is finer than “all or nothing” granularity in granting
access to protected APIs. With judiciously chosen restrictions for sensitive
APIs a permission-based security model can serve as a central platform in-
tegrity protection measure. Such a model can also help permission-savvy end
users (even if they are in the minority [62]) avoid leakage of private data and
malicious exploitation of functionality.

Users, operators, and regulators all get some genuine benefit from platform
security measures. Software developers, however, tend to only be inconve-
nienced by them, unless their software specifically requires functionality that
platform security happens to provide. There are restrictions in what features
can be had in an app, and how apps can be deployed (during a test/debug
cycle, or in the field). This can even motivate the maintenance of multiple vari-
ants of an app [84] depending on what permissions are grantable for which
distribution channel.

For most platforms the permissions required by an application must be
declared. Writing the declaration may not in itself be difficult, but permission
requirements are sometimes poorly documented [61], and keeping permission
information up to date is an extra maintenance burden. The burden can be
significant particularly for applications [84] that both exercise many sensitive
APIs, and also have variants with different feature sets.

n iOS 6, there is a small set of privacy-related permissions with application-specific settings.
Developers need not declare the required permissions.

2As of early 2013, end-user installation of iOS applications is only allowed from the official
vendor-provided App Store.

90

4.1. Introduction

We present an approach for inferring permission requirements for pro-
grams constructed out of a selection of components in a permission-annotated
codebase. While it takes effort to annote all sensitive primitives with per-
mission information, the up-front cost is amortized through reuse in new
program compositions. We have implemented the approach as one use case
for the research language Magnolia, designed to be statically analyzable to the
extreme. Magnolia avoids dynamic features, but has extensive support for
static “wiring” (or linking) of components. We argue that these characteristics
combine to facilitate permission inference without undue restrictions on ex-
pressivity. Magnolia also supports cross-platform code reuse, as its interface
and implementation specifications allow for declaration of permission infor-
mation in such a way that different platform-specific concrete permissions can
be handled in an abstract way.

Magnolia is source-to-source translated into C++, and hence can be used to
target platforms that are programmable in C++, including most smartphone
platformsE] Translation to a widely deployable language is an important
part of the overall portability picture, and also a possibility to abstract over
differences in implementations of said language. Cross-platform libraries and
Magnolia’s support for interface-based abstraction help with the API aspect
of portability. A third aspect is support for integration with platform vendor
provided tools, which remains as future work in the case of Magnolia.

Maintaining permission information together with source code should re-
sult in better awareness of possible runtime permission failures when pro-
gramming, and also allow for various automated analyses of the permission
requirements of programs and program fragments. Such analyses, particu-
larly when used in ways that affect the construction of software (e.g., due to
analysis-based generation of permission declarations, or even code modifica-
tions), could also aid in the discovery of errors in app permission declarations
or platform documentation.

While our focus is on permissions, some of the techniques presented apply
not only to right of access, but more generally ability of access. E.g., from the
point of view of error handling it matters little if a runtime failure is caused by
lack of camera hardware, or lack of permission to access it. There are platform
differences in whether requesting a permission will guarantee its runtime pos-
session, and also in whether it is possible to similarly declare a (software or
hardware) feature requirement so that availability of the feature will be guar-
anteed after successful installation. For instance, specifying ID_REQ_REARCAMERA
in the manifest of a Windows Phone 8 app will prevent installation on devices
without a back-facing camera [126]]. Given the similarities between permis-
sions and feature requirements we sometimes use the term access capability to
imply access ability in a broader sense than that determined by permissions.

4.1.1 Contributions

The contributions of this paper are:

3Magnolia is not a symbiotic language (i.e., a language designed to coexist with another one),
however, and there is nothing in Magnolia that would prevent its compilation into other languages.
Still, the current implementation only targets C++.

91

4. PERMISSION MANAGEMENT

e We give a brief overview of permission-based security models of a num-
ber of current smartphone OSes, and survey the associated tooling (if
any) for inferring required permission information for applications.

o We present a language-based solution for declaring permissions for APIs
and inferring permission requirements for programs. The solution al-
lows for cross-platform programming by exploiting the host language’s
support for interface-specification-level abstraction over different imple-
mentations.

e Wediscuss static analysis friendly language design choices that favorably
affect permission inference accuracy, and argue that some of the expres-
siveness cost of the resulting lack of “dynamism” can be overcome by
flexible static composition.

To evaluate the presented solution we have implemented it based on the
Magnolia language, and made use of it in a small cross-platform porting
friendly application that requires access to some sensitive APIs. We have
organized the app codebase to facilitate growing it to target multiple different
platforms and feature sets, probably with different permission sets for different
configurations.

4.2 Permission-Based Security Models in Smartphone
Operating Systems

Below we list distinctive aspects of the permission-based security models
of a number of current smartphone OSes (more wholesome surveys of the
permission and security models of some of the same platforms exist [4; [115]).
We also discuss any permission inference or checking tools in the associated
vendor-provided developer offerings. We provide a side-by-side summary of
permission-related details of the platforms in Table Due to the newness
of Tizen (no devices have been released as of early 2013) and the similarity of
its and bada’s native programming offerings, we opt to exclude Tizen (but not
bada) from the table.

Android allows for the definition of custom “permissions”. Permissions have
an associated “protection level”, with permissions of the “dangerous”
level possibly requiring explicit user confirmation; hence a developer
defining such a permission should also provide a description for it,
localized to different languages [3]. A “signature” level permission
does not have that requirement as it is automatically granted to apps
signed with the same certificate as the app that declared the permis-
sion. No tools for inferring permissions for an app are included in the
Android “SDK Tools” [3] as of revision 21.1. There are two third-party
permission checkers capable of statically analyzing the permission re-
quirements of Android apps. The tools are named Stowaway [61]] and
Permission Check Tool [178], and they both report on over/underprivi-
lege wrt manifest-declared permissions. Their accuracy is discussed in
Section 4.7

bada 2.0 The Eclipse-based IDE of the bada SDK 2.0.0 [154] incorporates an
“API and Privilege Checker” [153] tool that checks the project for priv-
ilege violations (an API requiring a privilege group is used, but the

92

4.2. Permission-Based Security Models in Smartphone Operating Systems

privilege group is not declared in the manifest) and unused privileges
automatically during packaging, and optionally during builds. The tool
is for checking privileges, and does not generate privilege group declara-
tions for the manifest.

BlackBerry 10 (BB10) is notable in that (upon first running an app) a user
may grant only a subset of the “permissions” requested in the corre-
sponding “application descriptor file” [26], and it is then up to the app
to react sensibly to any runtime failures caused by unpermitted opera-
tions. BB10 also has limited support for running (repackaged) Android
applications, with a number of Android features and permissions being
unsupported [25].

MeeGo 1.2 Harmattan access control makes use of traditional “credentials”
including predefined Linux “capabilities”, Unix UID and GID and sup-
plementary groups, and file system permissions. Harmattan adds to
these by introducing fine-grained permissions known as resource “to-
kens”, as supported by the Mobile Simplified Security Framework (MSSF)
[130]. Granting of credentials is policy-based, and consequently (as of
early 2013 and Harmattan version PR1.3) app credential information is
not shown to the user, either in the app Store or under installed Appli-
cations. The aegis-manifest tool performs static analysis of binaries and
QML source. It generates a manifest file listing required credentials for
a program, but may fail in exceptional cases. Dynamically determined
loading (e.g., via dlopen) or invocation (e.g., via D-Bus) of code are pos-
sible causes for the static scanner failing to detect the full set of required
credentials.

Symbian v9+ Symbian OS has had a “capability-based security model” since
version 9 [93]. It is unusual in that both executables and DLLs have
“capabilities”. A process takes on the capabilities of its executable. In-
stallation requires code signing with a certificate authorizing all the capa-
bilities listed in any installed binaries; a self-signed certificate is sufficient
for a restricted set of capabilities. Any loaded DLLs must have at least
the capabilities of the process. There is a “Capability Scanner” plug-in
for the Eclipse-based Carbide.c++ IDE that ships with some native Sym-
bian SDKs; the plug-in is available starting with the Carbide.c++ release
1.3 [131]. The scanning tool presents warnings about function calls in
a project’s codebase for which capabilities are not listed in the project
definition file. The tool is only able to estimate the required capabilities.

Tizen 2.0 The Tizen 2.0 SDK [167] release introduced a C++ based native ap-
plication framework, which appears to have bada-derived APIs. The
permissions in Tizen are called “privileges”; the set of permissions (and
their naming) in Tizen differs from those of bada. Privileges are specified
in a manifest file in an installation package, and there is no tool sup-
port for automatically inferring and generating the privilege requests.
However, as with bada, the Tizen SDK includes an “API and Privilege
Checker” [166] tool for checking for potential inconsistencies between
specified privileges and APIs being used in an application. The tool may
be enabled for automatic checks during builds or code editing, and it
may detect either under or overprivilege.

93

4. PERMISSION MANAGEMENT

Android bada BlackBerry 10 MeeGo 1.2 Symbian v9+ Windows
Harmattan Phone 8
permissions: open-ended predefined open-ended open-ended predefined predefined
set of “per- set of set of “per- set of set of set of
missions” “privilege missions” resource “capabilities” “capabilities”
groups” “tokens”
permission “normal”, “Normal”, N/A N/A “User”, “Least
categories: “dangerous”, “System” “System”, Privilege
“signature”, “Restricted”, Chamber”
and “Device
“signature- Manufac-
OrSystem” turer”
auth: depending by vendor at user by installer, user user
on time of approval; depending approved (all approval (all
permission: publishing, user may onsoftware ornothing), or nothing)
automatic, based on only granta source and developer
user developer subset of policies signed,
approved (all “privilege requested declared in identity-
or nothing), level” permissions software verified
signed by packages developer
authority, or signed, or
preinstalled vendor
approved
assignment recordedina recordedina recordedina recordedina specified in recorded in a
request: manifest in manifest in manifest in manifest in project manifest in
installation installation installation installation definition; installation
package package package package recordedin package
binary
inference by Stowaway “API and none aegis- “Capability ~ none (for
tools: (3rd party), Privilege manifest Scanner” WP8 - “Store
Permission Checker” Test Kit” for
Check Tool 7.1)
(3rd party)

Table 4.1: Smartphone platform permissions and tools support.

Windows Phone 8 (WP8) has a security model in which the kernel is in
the “Trusted Computing Base” “chamber”, and where OS components,
drivers, and apps are all in the “Least Privilege Chamber” (LPC) [95].
Software in the latter chamber may only directly invoke relatively low-
privilege operations, and only when in possession of the appropriate
“capabilities”. All capabilities are user grantable, and the requested
capability set of each app is disclosed in Windows Phone Store; some
capability requirements are displayed more prominently than others.
“Hardware requirements” may also be specified, and an app is not of-
fered for phone models not meeting the requirements. The Windows
Phone SDK 8.0 does not contain capability detection tools for apps tar-
geting WP@ nor (as of early 2013) are such apps programmatically
capability analyzed during Store submission [126].

*Windows Phone SDK 8.0 has a Visual Studio IDE integrated “Store Test Kit” that may be used
to inspect a Windows Phone OS 7.1 targeting app and list the capabilities required by it. Windows
Phone OS 7.1 is not natively programmable by third parties, and hence not a smartphone OS per
our definition.

94

4.3. The Magnolia Programming Language

4.3 The Magnolia Programming Language

Magnolia [24] is a research language that aims to innovate in the area of
reusability of software components. Safe composition of reusable components
requires strict specification of component interfaces—sometimes referred to
as APIs (application programmer interfaces) if semantic content is implied.
A description of an API in Magnolia is given using the concept construct; a
concept declaration can be thought of as an incomplete requirements spec-
ification. It specifies one or more abstract types, some operations on those
types, and the behavior of those operations (in the form of axioms). Each
concept may have multiple implementations that provide data structures and
algorithms that satisfy its behavior. Each implementation, in turn, may satisfy
multiple concepts.

One kind of operation that may be defined in Magnolia is a procedure. A
procedure has no return values, but may modify its arguments according to
specified parameter modes [13]. Legal parameter modes include obs (observe;
the argument is read-only), upd (update; the argument may be changed) and
out (output; the argument is write-only) [14]. A simple procedure that only
outputs to a single parameter may equivalently be defined in a more “sugary”
form as a function, and regardless of choice of declaration style, invocations
to such operations may appear in expressions The keyword call is used to
invoke an operation as a statement. A predicate is a special kind of function
yielding truth values, and taking zero or more appropriately typed expressions
as arguments. A predicate application as well as TRUE and FALSE are predicate
expressions, and more complex predicate expressions are built using logical
connectives.

The notion of partiality of an operation, meaning that the operation is not
valid for all values that its parameter types could take, is central to Magnolia.
Such a restriction can be specified for an operation. In the API it takes the form
of a guard [9] with a predicate expression, which may include invocations to
functions and predicates. The more fine-grained notion of alerts [16] is the
corresponding partiality notion in implementations. Alerts are an abstraction
over pre/postconditions and error reporting, and each partial functionis tagged
with a list of alert names and the corresponding conditions that trigger the
alerts. The set of defined alert names is user extensible and partially ordered,
possible to organize as a directed acyclic graph.

alert CameraAccessAlert;
alert NoCamera <: CameraAccessAlert;
alert NoAccessToCamera <: CameraAccessAlert;

predicate deviceHasCamera() = Permission;

procedure takePicture(upd w : World, out p : Picture)
alert NoCamera unless pre deviceHasCamera()
alert NoAccessToCamera if throwing PermissionDenied
alert NoAccessToCamera if throwing CameraInUse;

Here the alert names NoCamera and NoAccessToCamera are specialisations of the
alert name CameraAccessAlert. The procedure takePicture has three possible
error behaviors. The precondition test calling the predicate deviceHasCamera

5In Magnolia, an expression always yields a single value; i.e., there are no multi-valued
expressions such as (values 1 2) in Racket.

95

4. PERMISSION MANAGEMENT

checks whether the device has a camera; if not, it would not be meaningful to
use the procedure. The two other conditions have the same alert name, and are
triggered by the procedure implementation throwing one of two exceptionsﬁ

A program is a special implementation in that its operations are made avail-
able as “entry points” to a piece of software that is composed in Magnolia.
The Magnolia compiler translates Magnolia code into C++ source code, and
produces a command-line interface wrapper for the program through which
the exported operations may be invoked.

Due to Magnolia’s explicit static linking of components (as declared in
source code), all data structures and algorithms corresponding to a program’s
types and operations (respectively) are known at compile time. Programs
are statically typed, and there is no subtyping or dynamic dispatch (as e.g.
in the case of C++ virtual functions). There are also no first-class functions
(or even function pointers) to pass by value for parameterizing operations
at runtime; any such parameterization must be done statically by specifying
concrete operations used to implement a concept.

The static nature of Magnolia means that the actual target of an operation
invocation appearing in program code is always statically known. Due to this
itis possible to tell whether calls to a given operation appear in a given program
composition, and any definitions for operations that have no invocations may
be dropped for purposes of optimization or full-program analysis. Still, even
in Magnolia’s case it is generally not possible to tell if an operation appearing
in a program actually gets invoked, as relevant facts about program runtime
state or how far execution gets to proceed are generally not known at compile
time.

4.4 Language Support for Permissions

Here we design a way to model permissions (and more generally, access capa-
bilities) in Magnolia. As we prefer to keep Magnolia’s core language simple,
again for ease of analysis, we want to avoid feature-specific language exten-
sions where possible. In this case we can do so by mapping permissions onto
the Magnolia alerts system. The syntax may not always be as convenient as it
could be, but that could be fixed through superficial syntactic transformations;
we do not consider alternative syntaxes here.

The execution of a program consists of operations on the program state, and
we want to be able to determine the permission requirements of all operations
appearing in Magnolia code. To allow for this the permissions must either be
declared, or it must be possible to infer them based on the implementation
of the operation (i.e., its body). Magnolia currently allows an operation to
be implemented either in Magnolia or in C++; for the former we can infer
permissions by examining the language, but not for the latter. Any permission
requirements for C++ operations will therefore have to be declared.

Permission-protected operations are associated with requirements, i.e., pre-
conditions, as dictated by the platform APIs. We can state the preconditions
as alerts with predicate expressions, noting that a permission restriction gives

®In real-world code we might want different alert names to distinguish between errors of
a transient (CameraInUse) and permanent (PermissionDenied) nature. On most platforms
application permissions are fixed at install time.

96

4.4. Language Support for Permissions

us two separate concerns: (1) we want to know of the permission requirement
so that we can request the permission, and hence try to prevent runtime er-
rors; and (2) we want to be able to handle any related errors. For case (1)
we want platform-specific permission names, while for case (2) we would like
abstract, platform-agnostic error names, probably relating to the operation.
The example in Section [4.3|had the latter kind of names, namely NoCamera and
NoAccessToCamera.

For storing platform-specific permissions we essentially just want to have
the predicate expressions as named properties of operations. Had we sup-
port for convenient scripting of compiler-assisted queries we would not nec-
essarily require fixed, predefined naming, but might rather choose any de-
scriptive name to use as a search key to find the relevant expressions. The
built-in support for permission inference in Magnolia currently uses the name
RequiresPermission for this purpose (as suggested in Section[4.6} it might some-
times be desirable to use other names). We use RequiresPermission to “tag”
permission preconditions, and each permission appearing in a precondition is
defined as a “dummy” predicate.

As such predicates merely represent static properties, they are not intended
to actually trigger an alert at runtime. This can be ensured by treating
RequiresPermission as special and not inserting a precondition check for it.
A more general alternative is to define the predicates as TRUE, leaving any
generated check as dead code. On most platforms we can assume that the
program is only started if the declared permissions have been granted, but
there may be reasons for not requesting all inferred-as-required permissions.
Permission-related precondition violations are thus possible, and we want
them trapped as declared for their platform-agnostic alerts. It may be more
efficient to capture any platform-specific runtime “permission denied” error
than to actually implement a sensible predicate that checks for possession of
the associated permission.

The Magnolia compiler supports scavenging a program for its operations
(which, as mentioned in Section are known in Magnolia) and respective
permission requirements, provided the operations’ permissions are specified
as suggested above. (This approach also generalizes to other access capabili-
ties, e.g. Windows Phone hardware requirements.) The result is conservative,
but can only err on the side of too many permissions, assuming correct annota-
tions. One source of inaccuracy is the currently indiscriminate inspection of all
operations. Any dead code elimination done by the compiler happens later in
the pipeline; such optimization would be beneficial, particularly if data-flow
sensitive.

The second source of inaccuracy comes from the way we build the result.
Perhaps the most accurate way to represent the result would have been as
a single predicate expression such as BLUETOOTH() && CAMERA() && (ACCESS_-
COARSE_LOCATION() || ACCESS_FINE_LOCATIONQ)), built as a collation of the rele-
vant predicate expressions. Currently, however, we just build a set of permis-
sions such as {BLUETOOTH, CAMERA, ACCESS_COARSE_LOCATION}. This may produce
suboptimal results, as concrete choices must be made between logical alter-
natives. Our current implementation produces a set, and picks the left choice
from OR-ed permissions.

Platform-provided sensitive operations typically require a fixed set of
permissions, but there are many exceptions that motivate allowing the use

97

4. PERMISSION MANAGEMENT

of logical expressions to at least specify permission requirements, even if
we do not always make optimal use of the specification. Let us consider
the LocationManager class of Android OS. Its getLastKnownLocation(String)
method requires either ACCESS_FINE_LOCATION, or at least ACCESS_COARSE_LOCA-
TION, depending on the “location provider” specified as the sole argument.
The NETWORK_PROVIDER supports both coarse and fine grained positioning, and
no SecurityException should get thrown as long as either permission has been
requested (and granted). If we implement a network positioning specialized
version of the operation—perhaps named getLastKnownNetworkLocation—then
we may declare:

procedure getlLastKnownNetworkLocation(upd w : World, out 1 : Loc)
alert RequiresPermission unless pre ACCESS_COARSE_LOCATION(Q) ||
ACCESS_FINE_LOCATIONQ
alert LocationAccessNotPermitted if throwing SecurityException
alert IllegalArgument if throwing IllegalArgumentException
alert NotFound if post value == null;

We are using a platform-agnostic LocationAccessNotPermitted alert to allow
permission failures to be handled portably. The Android-specific permissions
we are stating as a predicate expression tagged with RequiresPermission. Other
possible errors for the operation are also mapped to alerts to allow handling.

For other platforms we would probably require a different (native) im-
plementation of the operation, also with different error-to-alert mappings de-
clared similarly to the above. E.g., on Windows Phone a UnauthorizedAccess-
Exception typically gets thrown on permission errors, whereas on Symbian
one can generally expect a Symbian-native leave (a form of non-local return)
with the error code KErrPermissionDenied. Interestingly, there are APIs (such as
those of the Qt cross-platform application framework) that have been ported
to different platforms, but which still necessarily have platform-specific per-
mission requirements. With such APIs one could have a single (native) imple-
mentation but multiple Magnolia declarations (with different alert clauses).

4.5 Experience with Application Integration

For trying out the solution we created a small software project named Anyx-
porter (Any Exporter) [23], with the goal of building a codebase that would
serve as a basis for creating various programs for exporting PIM (personal
information manager) data in different (probably textual) formats. We chose
the PIM exporting theme for exercising permissions as: (1) there are a number
of different data sources, possibly requiring different permissions; (2) different
storage/transmission options for exported data would likely require further
permissions; and (3) the idea of building a “suite” of programs should allow
us to keep the permission requirements of each individual program reasonably
small, which may make a user feel safer in installing a given variant (since the
program does not ask for permissions to do anything other than what the user
wants done).

Anyxporter currently includes only one proper PIM data source, for reading
contact data. Its implementation requires the Qt Mobility Contacts API [132].
Said API is implemented [132] at least for Symbian (S60 3rd Edition FP1 and
later), Maemo 5, and Harmattan, and also for Qt Simulator for testing purposes

98

4.5. Experience with Application Integration

(without real contact data). For targets for which the API is not available, we
have also implemented a “mock” data source that yields fixed contact data,
and this data source has proved useful in testing other components of the
software.

Of the targets supported by Qt Mobility Contacts, Symbian and Harmat-
tan have permission-based security models, and our discussion here focuses
on them. On Harmattan using the Qt API to read contact data requires the
TrackerReadAccess, TrackerWiriteAccess, and GRP: :metadata-users credentials,
whereas on Symbian only ReadUserData is required; clearly, the Symbian im-
plementation of the API is better in respecting the principle of least privilege.

The default output option is to save to a file, which for a suitably cho-
sen filesystem location requires no manifest-declared permissions either on
Symbian or Harmattan. Anyxporter also has initial support for HTTP POST
uploads of output files, implemented in terms of Qt 4.8 networking. Qt 4.8
is mostly unavailable on our example platforms, but Internet access generally
requires no credentials on Harmattan, and the NetworkServices capability on
Symbian.

Formatting of data for output is done using Lua scripts, and we currently
include an XML formatting option for contact data. A Lua virtual machine
(VM) instance is used as the intermediate representation (IR) between the
different input and output options; in principle, data of the same kind (e.g.
contact data) could have the exact same Lua object representation, regardless
of concrete data sources and output formatters. Through careful choice of
enabled Lua libraries we are preventing Lua code from doing anything other
than “pure processing”; it cannot access platform APIs or the file system, and
hence should require no permissions (or analysis for inferring permissions) on
any platform.

The various library components of the app, such as file system interface,
contact data source and Lua script interface, are specified by concepts. The
main app code is programmed against these concepts, so that it is independent
of the target platform. The app code is unaware of the exact nature of the
permissions, though it may make use of and handle generic permission denied
alerts.

Each library component has multiple implementations, one for each sup-
ported platform, with each implementation specifying platform-specific per-
missions. For example, the plain streams-based file system interface uses the
following permission predicates:

predicate CXX_FILE_CREATE() = Permission;
predicate CXX_FILE_WRITE() = Permission;
predicate CXX_FILE_READ() = Permission;

predicate CXX_FILE_DELETE() = Permission;

A particular version of the app is built by composing the main app code
with the platform-specific library implementations:

program CxxEngine = {
use Engine; /application logic
use CxxFileSys; // generic C++ versions of the library components
use CxxLuaState;
/| use the ‘mock’ data source
/| the data source mapper will apply "exportEntry’ to each data entry

99

4. PERMISSION MANAGEMENT

=@ . alert HEqUII’ESPEI"I"ﬂISSIOH =
45= program CxxEngine = {| predicate CXX_FILE_CREATE() = TRUE() H
" use E:gllzﬁes;:s predicate CXX_FILE_DELETE() = FALSE()

51 use CxxLuaState; predicate CXX_FILE_READ() = FALSE()

=5 use MockDataSource Ppredicate CXX_FILE_WRITE() = TRUE() 5
53 }; predicate MOCK_DATA_SOURCE_ACCESS() = TRUE()

54 predicate Permission() = FALSE()

Figure 4.1: Hover information for a program in the IDE shows which permis-
sions are enabled and disabled.

use MockDataSourceMapper[map => mapDataSource, Datal => File, Data2
=> LuaState, f => exportEntry];
};

Our system collects all the permissions used by CxxEngine, defines the
value of the relevant predicates to be TRUE (and the predicates for the unused
permissions to be FALSE), and then outputs the permission list in a text file,
together with the C++ code for the program. Figure[4.T|shows an IDE display
with the inferred permission requirements.

4.6 Problematic Permission Requirements

It is a Magnolia philosophy that incomplete specifications are okay, and that
specifying as much as is convenient is likely to give a good return for effort.
Documented platform permission requirements are generally straightforward
for individual operations, and it is unfortunate if they do not directly translate
into code, as one must then expend effort to considering how to best specify
them without harmful inaccuracies. There are real-world permission require-
ments whose accurate and convenient specification challenges our design.

It is not uncommon for the permission requirements of a platform oper-
ation to depend on its arguments. Such requirements can be specified as a
predicate expression for an alert, as shown by the example below. However,
as argument values are generally not statically known, the operation is no
longer guarded by a static predicate expression. Any permission analysis try-
ing to determine the permission requirements of a program will then require
a policy regarding how to translate such expressions to static ones without
underprivilege or too much overprivilege. Perhaps a better alternative is to
(where possible) divide the operation into multiple ones with static predicate
expressions. We did so in a similar example in Section#.4]by defining a location
provider specific operation for a provider known to support coarse-grained
positioning.
procedure getLastKnownLocation(upd w : World, out 1 : Loc,

obs p : Provider)

alert RequiresPermission unless pre ACCESS_FINE_LOCATIONQ) ||
(supportsCoarse(p) && ACCESS_COARSE_LOCATIONQ));

We have discussed declaring different permissions for different platforms,
but there are also permission differences between different releases of the same
platform. On Android, the permissions for some operations have changed

100

4.7. Related Work

over time due to subtle and innocuous code changes [5] in their implementa-
tion. As such changes tend to only affect relatively few APIs and operations,
it may be inconvenient to have to give separate implementation declarations in
these cases. One possible, pragmatic solution may be to give different alert
clauses for different platform releases. For example, we might generally spec-
ify AndroidPerm alerts for Android, but in some [5] cases use release specific
alerts:

alert AndroidPerm8 <: AndroidPerm; // Android 2.2 (API level 8)
alert AndroidPerm9 <: AndroidPerm; // Android 2.3 (API level 9)
procedure startBluetoothDiscovery(upd w : World)

alert AndroidPerm8 unless pre BLUETOOTH()

alert AndroidPerm9 unless pre BLUETOOTH() && BLUETOOTH_ADMIN();

4.7 Related Work

Most of the literature on permissions is focused on Android, while our ap-
proach is to exploit the abstraction facilities of Magnolia in order to cre-
ate platform-agnostic solutions. In Section 4.2| we already mentioned Stow-
away [61] and Permission Check Tool [178], tools for analyzing the permission
requirements of Android apps statically. As both tools are geared towards
checking already declared permissions against code, the issue of deriving a
concrete set of permissions to declare is perhaps less prominent; as explained
in Section the Magnolia compiler requires a policy for resolving logical
permission expressions into sets.

Both Stowaway and Permission Check Tool resort to heuristics due to
complexities of language and execution environment; heuristics-demanding
complexities relating to language should not arise in the context of Magnolia.
Stowaway’s analysis appears more comprehensive than that of Permission
Check Tool in that it attempts to handle reflective calls and Android “Content
Providers” and “Intents”. Magnolia has no reflective calls, and we propose that
permissions be declared for all external-facing interfaces. Permission Check
Tool works by analyzing source code using Eclipse APIs, whereas Stowaway
takes Dalvik executable (DEX) files as input; the Magnolia ideal is to have
programmable language infrastructure for custom analyses of semantically
rich source code.

The Stowaway authors tackled poor platform documentation by deter-
mining Android 2.2 API permission requirements through API fuzzing. The
PScout [5] tool has been found to discover more complete Android OS permis-
sion information. It performs a static reachability analysis between Android
API operations and permission checks to produce a set of required permissions
for each operation. Like our permission inferrer, PScout does path-insensitive
analysis on source code. PScout’s policy for “expression-to-set translation”
is to take the union of all appearing permissions, which is more conservative
than ours.

PScout has been used to extract permission specifications for multiple ver-
sions of Android. We are not aware of such analyses for other OSes, and
problems of poor API documentation are compounded for cross-platform
programming. With a suitably accurate and complete permission map avail-
able for a platform, one might imagine annotating a primitive with its set of

101

4. PERMISSION MANAGEMENT

sensitive operations rather than its permission requirements, allowing for the
latter to be inferred.

The kind of variability imposed by access capabilities is commonly handled
using feature models [19;22]. As shown in Section [4.4} access capabilities are
associated with specific operations of an API, thus letting us use the alerts
system of Magnolia for modeling their variability.

nesC [77] is a prominent example of a programming language with a pro-
gramming model that is similarly restricted as that of Magnolia. Like Magno-
lia, nesC does static wiring of components so that types and operations become
known at compile time; nesC even performs static component instantiation to
avoid the overhead of dynamic memory management. The static nature of the
language gives rise to a number of possibilities for accurate program analysis.
E.g., the nesC compiler itself performs static whole-program analysis to detect
data races. As nesC code is amenable to such analyses and the language also
features interface-based abstraction support, we believe it would be a suit-
able substrate for a cross-platform permission inference solution. However,
permissions are not applicable to TinyOS programming, which presently is
nesC’s primary domain.

As demonstrated by tools such as VCC [37], even unsafe languages (such
as C) can be made static analysis (or verification) friendly with a suitably
structured programming style and the addition of semantic information in the
form of annotations. Additional annotations could also be used for permis-
sions. Annotating an existing language is a valid implementation strategy for
an analyzable language, with the advantage of avoiding another, full language
layer. Magnolia’s ground-up design for analyzability is likely cleaner, and the
language can also be used merely as a tool for assembling programs out of
C++ components.

4.8 Conclusion

Permissions are among the nuisances that software developers have to deal
with. Language-based technology cannot lift access control restrictions, but it
can help manage them, and reduce the chance of uncleanly handled permission
errors occurring. Appropriate tools support enables automated analyses for
determining a set of permissions that (if granted) will mean that no permission-
caused runtime failures will occur. Suitable language can also help handle
runtime failures in a portable manner, using abstract, concept or operation
specific (not platform specific) permission failure reports and handlers.

We have presented such language and tools support. Our design relies on
the base language taking care of: enforcing a programming style that does not
prevent accurate static reachability analysis; and encouraging interface-based
abstraction. Mere ability to declare permission information in a language is not
special, as many languages (e.g., Java and Python) even support annotations
as a way to attach custom attributes to declarations.

In Magnolia, the base language of our implementation, we can use core
language such as predicates and alerts to express permission conditionality
and errors. Cross-platform interfaces may be exposed as concepts, and differ-
ent implementations and/or alert declarations may be used to express platform
differences. Coupled with tooling, code analyses (and also transformations)

102

4.8. Conclusion

can be performed based on such declared information and what it implies.

In Magnolia, “dynamism” can only be allowed in a controlled way for cor-
rect permission analysis, and even then only outside the language. Analyzable,
“static” language can be sugar-coated with convenient syntax, but certain fa-
miliar constructs are not directly transferable to Magnolia; e.g. a “traditional”
higher-order map operation cannot be defined as functions cannot be passed as
(runtime) arguments. Magnolia therefore carries some cost to expressiveness
and developer familiarity, but offsets that by offering rich compile-time seman-
tic information. Different language design tradeoffs could probably be made,
while still allowing for accurate cross-platform permission inference. We see
value in exploring awareness creating and preventative measures against po-
tential software failures, whether caused by access control restrictions or other
reasons.

Acknowledgements

We thank the anonymous referees for insightful comments on a draft of this
paper. This research has in part been supported by the Research Council of
Norway through the project DMPL — Design of a Mouldable Programming
Language.

103

CHAPTER

Error Handling

Systematic management of permissions, as discussed in the previous chapter,
may help avoid permission-related software failures. There are other kinds
of failures, however, and the possibility of failures is pervasive in real-world
software; failure management is a general concern in software development,
one that must be taken care of in order to achieve robustness.

In constructing a software product line, one might standardize on a par-
ticular convention for error reporting, to be followed by the public APIs of
different software components. Once a suitable convention has been chosen,
language support for it can be devised, as necessary; mere APIs may not be
capable of abstracting over the repetitive mechanics of realizing cross-cutting
functionality such as error handling.

In this chapter we describe a language-supported failure management con-
vention that permits syntax resembling those of mainstream exception mech-
anisms. We assume consistent adherence to it, so that the language need not
have separate sub-notation and semantics only for code that might fail; this is
beneficial for code stability, as one need not change notations where potential
failures are introduced.

I believe that failure-management support in the style of this chapter could
be adopted for a programming language that is used to implement platform-
agnostic components, or to compose a software product out of components
obeying the chosen error reporting convention. With this goal in mind, I
designed the error propagation scheme to be such that it can be realized by
emitting almost universally portable code. The scheme furthermore does not
entail disruptive control flow nor dynamic features that would complicate or
prevent inferring product configuration details (such as required permissions)
by inspecting program code.

I presented an extended abstract on this topic at NWPT 2015 in Reykjavik
[Hasu and Haveraaen, [2015]. This chapter contains a more code and language
focused variation of a paper to be presented at NIK 2016 in Bergen [Hasu and
Haveraaen) [2016].

105

5. ErRrOR HANDLING

106

Declarative Propagation of Errors as Data Values

Tero Hasu MaGNE HAVERAAEN

Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway

Abstract

A “thrown” exception is a non-local side effect that complicates static
reasoning about code. Particularly in functional languages it is fairly
common to instead propagate errors as ordinary values. The propaga-
tion is sometimes done in monadic style, and some languages include
syntactic conveniences for writing expressions in that style. We discuss
a guarded-algebra-inspired approach for integrating similar, implicit er-
ror propagation into a language with “normal” function application syn-
tax. The approach accommodates language designs with all-referentially-
transparent expressions, and syntactic conveniences resembling those of
traditional exception handling mechanisms. Our language-based failure-
management solution furthermore supports automatically checking data
invariants and function pre- and post-conditions, recording a trace of any
due-to-an-error unevaluatable or failed expressions, and in some cases
retaining “bad” values for potential use in recovering from an error.

5.1 Introduction

Traditional error handling mechanisms include explicit checking and propa-
gation of error return values, as well as try/catch-style language constructs
for intercepting non-local-returning, exceptional control transfers triggered by
errors. The return-value-based idiom has the drawback of requiring extensive
“manual code generation.” It also suffers from a common problem in error
handling, which is that most error information is volatile, with errors hav-
ing to be checked in their immediate reporting context to avoid them going
unnoticed.

The exception-throwing mechanism avoids those problems by transferring
both control and error information over any code not capable of handling
errors, but the difficulty of understanding potential error conditions and the
consequences of such disruptive error reporting is a cause of trouble for both
programmers and tools.

An unchecked exception triggers a non-local transfer (or even termination)
of control as a side effect. Observable side effects result in the loss of referential

© 2014-2016 Tero Hasu and Magne Haveraaen.

107

5. ErRrOR HANDLING

transparency [Strachey| 2000], i.e., a property of expressions that in essence
means that replacing a subexpression by its value preserves evaluation se-
mantics. Losing that property hampers equational reasoning about programs,
as equivalences between expressions become unclear. Furthermore, poten-
tially throwing operations and try/catch harnesses can induce numerous
control jump sources and targets, adding to static analysis complexity, with
the interdependent nature of data and control flows as an aggravating factor
[Bravenboer and Smaragdakis, 2009; Liang et al.,[2013].

One might argue that avoiding exceptions does not make much of a dif-
ference: as current mainstream languages assume extensive use of mutable
values, aliasing, and side-effecting operations, most static program analyses
for those languages have to be quite conservative in any case (as getting ex-
act results would be intractable or uncomputable). In these languages, then,
there may be little to gain in trading away expressive power for static se-
mantics. There are other languages, however, that make different tradeoffs in
order to support static reasoning. The research language Magnolia [Bagge and
Haveraaen| [2010], for example, features a referentially transparent expression
language, and would benefit (in terms of consistent design and richness of
features) from having an error handling mechanism to match.

Existing approaches from functional languages already show that it is pos-
sible to define sub-languages that are referentially transparent and implicitly
error propagating (beyond their original reporting context). The Either type
constructor in Haskell, for example, is sometimes used in defining types for
function results which are either successfully computed, or contain informa-
tion about a failure. As Either is also a Monad, one can use Haskell’s do
notation to write an expression that implicitly detects and preserves any fail-
ure result of one of its sub-computations. The syntactic convenience of using
monads implicitly is limited to do blocks, however, and there is no single error
monad being consistently used for error reporting in Haskell (the language
also features more traditional exceptions as a competing mechanism).

In this paper we explore the idea of making automated, monadic-resem-
bling error processing the default in a language, in a way that makes it possible
to retain referential transparency of expressions. Our solution’s language-
integrated error processing is not error monadic, but resembles it in that
wrapped values (with error information) and implicit actions between op-
erations are involved.

We furthermore explore a declarative language for adapting to different
error reporting conventions. Operations need not be (re)programmed to re-
port errors as wrapped data values; rather, code for checking for errors and
converting to wrapped values can be inserted automatically. Our declarative
language is based on the previously presented alerts [Bagge| [2012;Bagge et al.|
2006] error abstraction, designed to abstract over different concrete mecha-
nisms; consequently, in our solution pre- or post-conditions, exceptions, etc.
can all trigger alerts, and be treated uniformly from an error handling point of
view. Guarded algebras serve as the formal basis for our declarative checking
of failure conditions.

For our error-information-enriched data types we have experimented with
somewhat unorthodox information content, such that an error value may
contain (D a history of expressions that failed to compute and (2) any bad
values produced by failed expressions. Both kinds of information may be

108

5.2. Guarded Algebras

useful in error recovery. The actions required for history recording are not
expressible as an error monad (which cannot accumulate error information),
but they can nonetheless remain implicit through other forms of abstraction,
as we show in this paper.

We have tried the presented error recording and propagation scheme with
variants of a custom, small, purpose-built programming language named
Erda. Erdagy is a dynamically typed functional language targeting the Racket
virtual machine (VM), while Erdac, . is a statically typed “first-order func-
tional” language that compiles to C++ source code. The implementation of
Erdagy is purely based on program transformations expressed in terms of the
host language’s macros, whereas Erdac.,; additionally relies on a compiler
for deployment via C++. Differently oriented, implemented, and deployed
language variants give some confidence in our scheme’s generality and porta-
bility.

5.1.1 Contributions

The main contributions of this paper are:

o We show that propagation of errors as ordinary data values (of generic
wrapper types) can be made implicit by realizing it at the language level
so that all the relevant language constructs check and process additional
ranges of data Valuesﬂ

e We show that conversions between bare and wrapped values can be
automated (where necessary, and without distinct expression syntax)
based on declarative specifications, and explain how those specifications
relate to guarded algebras.

o We suggest that the wrapped values might include a history of failed
expression (which failed to compute a “good” result), and show that
such history can be useful for deciding on recovery actions. We also
show that a language can support retrying of any failed expression based
on such history, and that this can be useful in implementing recovery
actions.

e We suggest that wrapped values might also contain any “bad” values
computed by fully-yet-unsuccessfully evaluated expressions (i.e., values
that fail to fulfill a predefined invariant), and illustrate that such values
can also be useful for recovery.

5.2 Guarded Algebras

The theory of guarded algebras [Haveraaen and Wagner,2000] is a systematic ap-
proach to handling partiality and error values in algebraic style specifications.

I This idea has been seen before in monadic APIs, also at the language level when it comes to
Haskell’s do blocks and similar notations; we consider it more pervasively, however, not limited
to special constructs in a language. Unlike the do notation, our solution also permits direct-
style [Danvy}, |1994] programs, in which function applications nest normally (without binding of
intermediate results or passing of continuation arguments).

2t is common for a language to record a stack trace, or for a program to record a “cause”
chain of errors, but here we consider recording information about the failed expressions and their
arguments.

109

5. ErRrOR HANDLING

The approach allows total models and partial models, e.g., non-termination,
yet allows the simpler total algebra reasoning in both cases.

The basic idea of algebras is centered around signatures and models for
the signature. A plain signature (interface declaration) is a set of atomic type
declarations, including the type predicate, and a set of function and predicate
declarations, where the arguments and results are from the set of types. A
predicate is a function with the return type predicate. Every type has an
equality predicate. A model or algebra for a signature provides:

e A set for each type, called the carrier set, where the type predicate has a
carrier set containing at least {TRUE, FALSE}.

e A total set-theoretic function for each function declaration, where the
argument and result sets are the corresponding carrier sets.
For every signature we get the notion of type correct expressions with typed
formal variables.
A gquarded signature is a signature such that it in addition provides:
e A predicate good for each type, separating the carrier’s good (when the
good predicate evaluates to TRUE) and bad values (otherwise). The carrier
elements TRUE and FALSE for the predicate type are its good values.

e A function declaration may have an explicit guard, i.e., a predicate ex-
pression that identifies its good arguments (when it evaluates to TRUE),
as a subset of the good values of its argument types.

There is a well-formedness constraint ensuring that a function cannot appear
directly or indirectly in its own guard.

We get the plain version of a guarded signature by disregarding the guards
for its function declarations. The expressions for a guarded signature are the
same as those for its plain signature.

On a computer a type is defined by a data structure, and its carrier is
the set of bit patterns admitted by the data structure. The good bit patterns
are those we consider valid for a type, e.g., as given by a data invariant.
For instance, for ISBN numbers or the Norwegian national identity number
system (fodselsnummer) this means having valid checksums; for C and C++
unsigned integer types all bit combinations are valid; and for IEEE floating
point numbers [IEEE, [2008] this means not being a NaN (not a number)ﬂ

The guard for a function can intuitively be thought of as its precondition.
Normally we are only interested in how functions behave on the good values,
and so every function gets an implicit guard ensuring that it only receives
good values.

Some functions are handler functions, however, possessing the ability to
recover from (some) errors: in addition to taking its good arguments to good
values, a handler also takes some (or all) of the bad values of its argument data
types to good values. For example, a handler might try to turn a bad value
into a good one based on redundant information in the bad data, such as that
of a fedselsnummer. The fodselsnummer is an 11 digit number designed to
allow for error correction, i.e., it is possible to find the correct fadselsnummer
from a number with a few errors of the kind humans often do when handling
long digit sequences by hand (swapping digits, misrepresenting a digit, etc.).

3 For instance, a NaN is returned for the floating point operation 0/0, but not for 0.1/0, which
instead yields a positive infinity value.

110

5.2. Guarded Algebras

In many cases the recovery action is dependent on the local context that
causes the error. For instance, the two function definitions r1(x) = sin(7mx)/x
and rp(x) = x/(sin(mx) + x) both yield a NaN (0/0 error for x = 0), but in the
former case we should recover to the value 7, and in the latter to the value
1/(m + 1), as given by L’'Hopital’s rule.

5.2.1 Algebraic Specifications

An algebraic specification consists of a signature, giving the vocabulary, and a
set of axioms. An axiom is a predicate expression, which fails for a model if it
is FALSE for at least one combination of elements in the carriers of the model;
otherwise the axiom holds. A model satisfies a specification when all of the
specification’s axioms hold for the model.

A quarded specification is an algebraic specification with implicit goodness ax-
ioms. A goodness axiom ensures that the result of a function is a good value (by
the type’s good predicate) for its good arguments. Good arguments to a func-
tion are good values which are also accepted by its guard (and must be good
values for every expression in the guarding predicate). Good values for an
expression are values which maintain goodness through every subexpression
of the expression.

A model satisfies a guarded specification when all of the axioms hold for
all good arguments. Thus any bad argument is ignored by the specification.
For instance, we can write a guarded axiom for divisionas (a / b) * a = 1,
which automatically ignores the case when b = 0 if the function x/y hasy #
0 as a guard. In the plain version we would need to explicitly exempt that case
by writingb # 0 = (a / b) * a = 1.

The definition of satisfaction for guarded axioms ensures that they only
restrict the behavior of a model on the good arguments. The behavior for bad
arguments and bad values is not constrained by the axioms. The restriction to
good arguments has a profound effect: axioms on guarded signatures can just
ignore any problematic cases, which can become overwhelming to account
for in plain specifications. Translating a guarded specification to a plain spec-
ification means (1) removing the extra structure of the signature, (2) making
the implicit goodness axioms explicit (one per function, which must include
checks for good arguments), and () changing each axiom to include checks
for good arguments for all of its subexpressions.

Due to the nature of guarded algebras, writing out the implicit axioms does
not add any information to the guarded specification. Actually, writing axioms
with a goodness predicate does not add any constraint to a guarded algebra.
Thus the goodness predicates can be kept hidden in a guarded signature, and
only need to appear when we want to see the plain version of the signature
and its specification.

If we use partial set-theoretic functions as models for function declarations,
the above requirements on guarded algebras force the functions to be defined
for all good arguments. A partial function may thus be undefined only for
bad arguments.

111

5. ErRrOR HANDLING

5.2.2 The Structure of the Bad Values

We define two guarded algebras to be care equivalent [Haveraaen and Wagner,
2000] if they have the same sets of good carrier values and the same sets of
good arguments for each function, and if the functions give the same results
in both algebras for the good arguments. Thus care-equivalent algebras only
differ in the selection of bad values, and the behavior of the functions on bad
arguments.

Studying the class of care-equivalent algebras, we get the following prop-
erties:

e This class has initial algebras. For the total case this is the free term
extension. For the partial case this is the algebra where the functions are
undefined for all bad arguments.

e The class has no final algebra. Specifically this means that there is no
canonical way of dealing with a single error element as the bad value,
nor is there a canonical way of avoiding bad values.

An initial algebra has a unique mapping to any algebra. Obviously the
partial algebra that only defines good values and arguments has a unique in-
clusion to every algebra possibly defining bad values. The free term extension
algebra informally represents the complete history of failed expressions (or error
history). Every function call with a bad argument is an element of the bad
values. Then of course every function call with such a bad value as argument
is a bad value in itself, and so forth. This algebra is canonical in representing
all information about what happened from the moment a bad argument was
used (i.e., a record of what would have been done had the error not occurred),
whereas the all-good-arguments case yields the expected computation.

A final algebra has a unique mapping from every algebra. In the class
of care-equivalent algebras, an algebra may have functions that can recover
from bad values. An algebra that recovers from a bad value does not have
a mapping to an algebra that recovers from a different bad value, nor to an
algebra that does not recover from a bad value, such as the single error element
algebra.

Handler functions computing good values from bad values have to obey
the guarded specification on their good arguments, but are free to recover from
bad arguments in any suitable way. In some cases they might replace the first
bad arguments in the error history with good ones, and then replay the history
on the replacement values.

5.2.3 Guarding Programs

An implementation for a plain signature defines an algebra for that signature,
by means of the code defining the data structures (sets of bit patterns) for the
types and the algorithms (computations on sets of bit patterns) for the function
declarations.

When implementing a guarded signature, we need to provide defining
code for the corresponding plain signature. Thus we need to provide a data
structure and designate a good predicate for each type, and we need to provide
code for each of the declared functions and predicates, including the good
predicate for each type.

112

5.2. Guarded Algebras

With this code in place, the implementation can be verified or tested for
conformance with the guarded specification or its plain counterpart, both of
which concern the implementation’s behavior on good values. Such valida-
tion includes the implicit axioms for the preservation of goodness (i.e., good
arguments yield good results). This ensures reliability: the functions behave
as specified on good arguments.

The guards for a function are more difficult to interpret when implementing
the guarded signature. Technically, the plain version of a guard includes
checks for good values for each argument, checks for good arguments for all
subexpressions of the guards, and the actual guard predicates themselves.

In languages which support precondition declarations (e.g., Ada-SPARK
or Eiffel) the plain version of the guard can be provided as a precondition.
Otherwise, tool support for preconditions may be developed (e.g., JML for
Java). In both cases, the tool can insert precondition checks wherever needed.
If no tool support is available, precondition checks can be inserted manually at
the start of every implemented function. Precondition checking canbe avoided
if the condition can be proven to hold. For instance, if the implementation
satisfies the implicit goodness axioms, it is easy to prove that only external
inputs need to be checked for goodnessﬂ as all internally produced values
will be good values.

Traditionally, a precondition violation causes the program to terminate
early, or otherwise disrupts the normal control flow. Alternatively, we can
encode each such violation as a bad data value, and keep the normal control
flow of the program, for referential transparency. The bad data values are
automatically avoided by the guards, ensuring robustness in the sense that
corrupt data does not induce uncontrolled behavior, which in turn could lead
to an application’s security or safety being compromised.

An implementer may decide to use a weaker precondition than the full
plain condition corresponding to a guard. For instance, the binary search
algorithm requires a sorted data array to function properly. Still, a program
dealing with only mostly sorted data arrays might first attempt a binary search
in the data, and on failing to find the key that way, revert to a sequential search
to make sure that the sought data has not been overlooked. In this scenario,
the binary search function need not require a sorted array as a precondition;
instead, its found item data type can admit an “item not found(key, data
array)” bad value. Sequential search can then be done by a handler that passes
a good value through, and recovers from an “item not found” by either finding
the item and yielding the good item value, or by returning a good “no such
item” value.

While we in some cases want to call a handler directly after a possibly
failing function call, as with the “item not found” recovery, doing so later
on in the program may also be useful. Particularly if a complete history of
what went wrong is available as the free term extension (i.e., the initial bad
values for the care-equivalent algebras), it should still be possible to recover in
a non-generic way, accounting for the circumstances of the failure condition.

Many data types lack spare bit patterns to encode bad values; e.g., in C

% Checking of input data is very important, as corrupt data has been known to cause security
problems; e.g., corrupt JPEG or TIFF images have caused arbitrary code execution in browsers
and image processing software.

113

5. ErRrOR HANDLING

and C++ unsigned integers, all bit patterns correspond to valid numbers. A
data type may also simply have too few spare patterns for encoding all the
bad values we wish to differentiate; e.g., an extreme case of this is the free term
extension of bad values. To cater for these situations we may need extensive
changes to our data types, with corresponding upgrades for our functions.

5.3 Automatic Pervasive Error Handling

We have argued that we can achieve referentially transparent and pervasive
error handling by injecting error conditions as bad values into a data type. In
our approach, normal functions will ignore the bad data, and special handler
functions can deal with it at appropriate places in the normal control flow.

5.3.1 Automatic Bad Value Extensions

We define an error extension Tr of a normal type T as a disjoint union data
typ with cases: cgood, containing only the good values of type T; and cbad,
containing the error values E. The type E is chosen according to what error
information the programmer wants to record. Functions f defined on T will
have to be extended to functions on Tg, while obeying the same guarded
axioms. With tool support, we will be able to almost transparently deal with
error extensions from normal code on T.

Error history extensions. The simplest error history extension is the free term
extension, which defines the type E to be all terms (abstract syntax trees) with
bad arguments. Thus the carrier for E is all terms representing expressions
with argument values (encapsulated as terms) that cause evaluation errors,
and all subsequent function calls having any such value as an argument.
Every function f defined on the normal types T gets extended to a function

f on the encapsulated types T¢.

cgood(f(a1,...,ar)) ifd; = cgood(a),...,
A = cgood(ay) and ay, ..., a
are good arguments for f,
cbad(’f(dy,...,dx)) otherwise.

f@,...,a4) =

The notation ‘e creates a term from the expression e. Note that 4; can be: @D
a cbad value holding a part of the error history, which then gets extended by
the f function call; @) an encapsulated value belonging to the cgood case yet
forming a bad argument to the function f, in which case the entire expression
becomes a cbad value containing the call and its argument values; or 3) an
encapsulated value belonging to the cgood case and forming a good argument,
in which case f is evaluated and the result becomes an encapsulated cgood
value. The extended function f will obey the same guarded axioms as f.

An error history extension E can also record additional information along-
side the term, like the good or bad value from evaluating the guard, or a
possible data invariant breaking value returned when calling f. This extra in-
formation is in principle reproducible from the other error history (assuming

5 These are called algebraic data types in the context of functional languages.

114

5.3. Automatic Pervasive Error Handling

that no external state is involved), making the extended E isomorphic to the
free term extension. However, such extensions may simplify the implementa-
tion of handler functions.

User-defined error extensions. An extension of this kind is specified like the
error history extension above, except that the user provides the type E, and
defines a function error_encoding that will compute values in E from the
term ‘f and an argument list (4, ... ,ﬁk)ﬂ This can be useful if the errors for
a type can be classified into a few cases. E can then cover those cases, and
nothing more, possibly saving significant resources over the full error history,
yet providing some details about the error.

Singular error value extensions. This is the classical case where a type is
extended with a single error value, the type E becomes the singleton set, and
the cbad case only indicates an error but no more detail about its origin.

Handler functions. A handler f is a function defined directly on T, and as
such it can recover from bad arguments while behaving as a normal function
on the good cases. Handlers extend a function f on T with extra code for
bad arguments, where f is a normal function (e.g., the identity function for
a recovery-only handler). Since the f extension handles the good arguments
like the automatic extension f, it will obey the guarded axioms for f. Handlers
based on identity functions can be placed anywhere in a program’s code with-
out altering its reliability (as it will still obey the same guarded specification),
but may radically improve the well-behavedness of the program on bad input
data (which may get turned into formerly bad data).

How to best recover from errors may depend on the local context where
the error appears; e.g., consider the functions r1 and r; in section[5.2] One way
of recovering contextually is to place a specifically chosen handler function
immediately after the expression that may cause an evaluation error. More
generic handlers can be placed further away from the possible error sources,
allowing a uniform or more centralized handling of a larger set of errors.

5.3.2 Bad Values from Run-Time Errors

In order to do an error extension Tg for functions (or predicates) f on types
T, we need to understand what error reporting mechanisms are used when
calling f on bad arguments from T. Hardware architectures and software
engineering practices have many idiomatic ways of alerting software about
such error information. We follow Bagge et al| [2006] in suggesting how
we can translate the various alerting idioms systematically into our idiom of
instantiating a cbad value in E.

Preconditions. A precondition is a predicate defining the good arguments for
a function. If the precondition predicate applied to the arguments does not
yield TRUE, the arguments are bad and the term must be encapsulated as a
cbad value.

®Tn effect, the function error_encoding is a “homomorphism” from the error history extension
to the user defined type E.

115

5. ErRrOR HANDLING

Postconditions. A postcondition is a predicate providing a specification of a
function’s result. A postcondition violation (the predicate does not yield TRUE
on the result of f), can be interpreted as identifying bad arguments to f, hence
the call should be encapsulated as a cbad value, possibly also including the
computed violating result value. Such an approach is convenient if explicitly
checking for good arguments is (almost) running the algorithm of f, while the
postcondition predicate is a simple test on f’s result.

Datainvariants. A datainvariant is a predicate provided with a data structure,
where the predicate discerns between good values and inconsistent values. All
values in cgood T are assumed to yield TRUE when tested by T’s data invariant.
The invariant is therefore assumed to be both an implicit precondition and
an implicit postcondition for functions f, and can be treated as such for the
purpose of creating Tr values. However, often the implementation of data
invariant preserving functions may be split into helper functions. Helper
functions may create an inconsistent value from a consistent or inconsistent
value in T, or consume inconsistent T values and yield a consistent value in T
for actual use. A helper function g of the former kind will be encapsulated as a
¢ function yielding (accumulated) Tg error values for postcondition violations.
A helper function & of the latter kind should be turned manually into a handler
function & that takes Tr error values to T cgood values.

Error codes. An error code is a good value outside of the normal return value
range of a function, used by the function to signal an error. Error codes can be
captured in the same way as postcondition violations.

Error flags. Error flags are extra output arguments recording the state (OK,
error, and possibly what kind of error) of the result of a function call. They
behave like error codes, and need to be checked before the function’s return
value is used. Error flags can be captured as postcondition violations: the flag
has to OK the returned data, otherwise the function received bad arguments.

Status variables. Status variables are similar to error flags, except that they
are global variables being set by the failing function. Normally a status variable
is reset by the next function call, but sometimes the status variable is sticky and
has to be explicitly reset. We can handle this by checking the status variable
after each return, resetting it and treating its value similarly to the error flag.
As an optimization, sticky error flags allow the granularity of checking to be
reduced.

Exceptions. An exception mechanism causes a disruption of the normal con-
trol flow when an error occurs. In our setting, we need to catch any exception
and translate it into its corresponding cbad value. The computation can then
follow the normal path for either case of Tr, improving code reasoning, sim-
plifying code transformation, etc.

116

5.4. Erda

5.4 Erda

We have described error handling automation for bad-value extending types
and translating between alerting idioms. That automation relies on program-
ming language support, and we have implemented variations of such support
for our proof-of-concept Erdcﬂ language family. For this paper’s concrete code
samples, we mostly use the Erdag, language, whose native error processing
behavior matches the error history extension semantics of section

5.4.1 Erdagy
Erdagy (Error data Guarded Algebras) is a dynamically typed language imple-

mented purely in terms of Racket’s “normal” language implementation facil-
ities, by macro expansion to Racket’s core language, which is then executable
directly in the Racket VM. In Racket, a language is normally implemented as
a library whose exported macros define the surface syntax of the language
[Tobin-Hochstadyt et al., 2011]].

Erdag4 reuses Racket’s module system directly, and bears a close syntactic
resemblance to Racket. Despite the similar looking syntax, Erdacg is different
in that its expressions take and yield good-or-bad wrapped values by default;
all literals, for example, get an implicit Good wrapper. The wrapper data type
is effectively an algebraic data type, with the Good and Bad variants defined as
Racket structure types, sharing a common, “abstract” Result supertype.

In Erdagy, a failed-expression history is also built out of Good and Bad
objects. More specifically, a history is an AST with Bad branch nodes and Good
leaf nodes. A Good node represents an atomic value with no history, whereas a
Bad node represents a function application. A Bad node has further AST sub-
structure, namely the applied value and its argument list, where the applied
value would usually be a function (as required for its successful application).
This simple design of only two AST node types works since all Bad values are
created by some operation, even if it is just an explicit error instantiation (e.g.,
with raise).

Not all Erdagy4 expressions are function applications. Expressions like lit-
erals and variable references never fail, and thus cannot yield a Bad value.
Expressions like begin and let do not in themselves produce a value, and
those expressions are not included in history; only their value-giving sub-
expressions are Erdagy4 expressions that may (directly) produce a bad value,
and which are not function applications, are turned into function applications,
at least for purposes of history recording. For example, all conditional con-
structs (e.g., if, and, or, and cond) are macros that translate to applications of
Erdag,’s if-then function, whose “then” and “else” arguments are wrapped
in a lambda to delay their evaluation.

Erdag4’s history representation scheme allows error-history-extended op-
erations (as described in section to be introduced into the language
purely in terms of macros and functions, without requiring a mechanism to
introduce new AST node types; defining a new operation mostly just means

"Documentation: https://bldl.ii.uib.no/software/pltnp/erda.html
8Discarding of side-effecting sub-expressions may mean that history replay does not reproduce
all the original behavior of an expression.

117

https://bldl.ii.uib.no/software/pltnp/erda.html

5. ErRrOR HANDLING

ensuring that any associated function calls consistently obey the expected con-
vention of processing good and bad values. For Erdag,4 functions, automated
bad value extension is done at the definition sites, by inserting additional code
into the function bodies.

A function may be defined with Erda;4’s define syntax, which accepts an
optional #:alert clause for specifying guards for the function. The breaking
of a function application’s guard automatically results in a Bad-wrapped value,
which makes it rarely necessary to explicitly construct bad values in code. The
#:alert syntax closely resembles that of the original alerts proposal [Bagge
et al., 2006]:

(define (div x y) #:alert ([div-by-0 pre-when (= y 0)])
; call Racket’s division operator /, assumed imported as rkt./
(rkt./ x y))

A defined function by default has an implicit guard enforcing all-good
arguments. The optional #:handler modifier overrides this behavior so that
it becomes possible to define a function able to handle (some) bad arguments.
For example, we can write a function that accepts any argument (even a Bad
one), and returns (Good 42):

(define (forty-two x) #:handler 42)

Erdacy features a transparent foreign function interface (FFI) mechanism,
allowing Racket functions to be called directly, with automatic unwrapping of
arguments and wrapping of results (we relied on that in implementing div,
above). It is not necessary to declare total Racket functions, but any partia]ﬂ
ones should be declared, using #:alert clauses to specify how errors are
reported (so that, e.g., an exception gets caught and converted to a Bad value):

(declare (/ x y) #:is rkt./
#:alert ([div-by-0 on-throw
exn:fail:contract:divide-by-zero?]))

It is the declare form that creates an error history extension f (1,...,4r)
for a primitive function f, as specified in section 5.3.1} whereas native Erdag,4
functions are implemented to process wrapped values to begin with. It may be
worthwhile to declare Racket primitives even when it is not strictly necessary,
as the history extension is then prepared as code at compile time, rather than
performed dynamically. Erdac, is also able to generate more straightforward
code for direct applications of declared and defined functions.

In addition to the alert-supporting defining forms, Erdag4 also includes
language for constructing, inspecting, and modifying error values, to support
the definition of handler functions for recovery or error reporting. Each alert
has an inspectable name, for instance, represented as a Racket symbol. A
simple example of creating a bad value, inspecting its alert name, and doing a
name comparison is this expression evaluating to (Good #t):

°In a dynamic language like Erdac, or Racket, any function expecting arguments of specific
types is actually partial. One could consider enforcing required argument types with #:alert
pre-conditions, but where a type error can be considered a programming error, one may want to
terminate the program instead of producing a bad value. For type assertions, one might opt to
use Racket’s built-in “contracts” mechanism, for instance.

118

5.4. Erda

(alert-name=? (bad-result-alert-name (raise 'not-found))
'not-found)

Error “Catching”

Although errors are just values, and inspectable and manipulatable using gen-
eral-purpose language, it is still possible to introduce error recovery syntax
that resembles conventional try/catch constructs (e.g., as found in C++ and
Java).

Erdac4 has a try construct as an error-handling-specialized “case” expres-
sion. Where a try form’s body expressions produce a Bad result, the original
error’s alert name is matched against those specified for #: catch clauses. One
can have multiple #: catch clauses, list multiple alert names per clause, and it
is also possible to include a “catch all” clause.

In this example we define a function add-creator, ostensibly for adding
information about the device from which a document object doc originates.
Internally, the function uses try to recover from a potential API access permis-
sion error due to the serialNumber call (conversely, the modelName function is
known not to fail). As a form of recovery, a note about any failure is added to
anotifications object, which is also returned:

(define (add-creator notif doc)
(let* ([hw (HardwareInfo)]
[doc (add-creator-device-model doc (modelName hw))])

(try

(cons notif (add-creator-device-id doc (serialNumber hw)))
#:catch

[(NoPermission)

(cons (add-missing-permission-note notif

'read_device_identifying_information)

doc) 1))

For the common case of recovering from any error, Erdagy4 also hasa ::>
form, as a more concise alternative to using nested try forms with #: catch-all
Clausesm The : :>form takes one or more subexpressions, which are evaluated
in order until one of them gives a good result, or until the last one is reached.
For example, we can use : :> to concisely specify a default value for the case
where a database lookup function triggers some alert upon trying to look up
a value for a field that does not exist for the specified entry:

(format "Entry saved for ~a"
(::> (lookup entry 'name) "Doe, Jane"))

Recovering by Replaying History

Since Erdagy’s error history contains the function and argument values of
failed operations, it is possible to retry an operation, possibly with some of the
arguments replaced with different values. Erda;4’s redo and related functions
implement such history “replay.” When coupled with a comprehensive API for

19The : :> form is named after the <:: operator of Bagge et al|[2006].

119

5. ErRrOR HANDLING

examining and modifying history, this facility opens up various possibilities
for performing recovery.

For a basic, nonsensical example of recovering with history replay, we can
rephrase the above database lookup recovery to work from outside the format
expression itself. The format call should only fail if its second argument
produces a bad (or unformattable) result, and thus we might retry a failed
formatting by replaying the recorded call with a different second argument:

(let ([msg (format "Entry saved for ~a" (lookup entry 'name))])
(::> msg
(let ([args (bad-result-args msg)])
(redo-apply msg (args-list-set args 1 "Doe, Jane™)))))

The outside-recovery idea can be extended to recursively rewriting history
rooted at a bad value. One possible application might be to work around
a weakness in a third-party library written in Erdag,, while still avoiding
forking the code in that library. Suppose, for example, that we are using some
social network client library for Android, whose create-account function
wants to upload all of the client device’s contact data upon creating a new
account:

(define (create-account data)
(define 1st (read-all-contacts))
(create-account+upload data 1st))

We may remember to correctly request the READ_CONTACTS permission for our
application, but those running a suitable version of CyanogenMo may be
using Privacy Guard to deny that permission for our application, causing
read-all-contacts to fail inside the third-party code. To recover from a
failed create-account call, we might rewrite its failure history to remove
any operations that failed with a NoPermission alert, instead substituting an
empty but good result. With that change made, the rest of create-account
may well succeed when redone, making it seem that the user’s contact database
has zero entries:

(define (rewrite v) #:handler
(if (bad-result? v)

(if (alert-name=?
(bad-result-alert-name v)
'NoPermission)

null ; empty contact list

; recurse into arguments stored in v

(bad-result-args-map rewrite v))
v))

(define account-id
(try
(create-account account-data)
#:catch

11http ://www . cyanogenmod . org/

120

http://www.cyanogenmod.org/

5.4. Erda

[(NoPermission)
(redo (rewrite value))]))

Our NoPermission recovery in this example already hints at the redo mecha-
nism possibly being useful for implementing centralized handling of known
kinds of errors, wherever they may occur.

To expand on that idea, let us consider a control loop that selects commands
(with some randomly chosen arguments) based on user input, and tries to
deliver them to a Spher robot over a Bluetooth connection. Our main loop
will only exit if it fails to recover from a bad reply, as discussed below:

(define (main)
(define choice (user-choice)) ; read user input
(define reply ; robotresponse or a failure
(cond
[(= choice 0®) (set-stabilization (random-stabilization))]
[(= choice 1) (set-rgb-led (random-rgb))]
[(= choice 2) (set-back-led (random-color))]
[#:else (set-heading (random-heading))]))
(do ; section explains do
(recover reply) ; returnsa good reply as is
(main))) ; repeat only if recover succeeded

Our commands can all fail for the same reason, i.e.,, a missing or broken
communication channel to the robot. The obvious recovery for such a failure is
to reconnect, and then retry issuing the command. In Erdag,4, we can realize
the retry functionality without explicitly keeping track of which command
needs retrying, as we get that bookkeeping from the language. This makes
it convenient to implement our centralized error recovery function, one that
only fails if it cannot arrange to ultimately redo its argument r, as would
happen in the event of an alert that it is unprepared to handle:

(define (recover r) #:handler
(try r
#:catch
[(ConnectionFailed)
(do (reconnect)
(recover (redo r)))]
[(StabilizationOff)
; set-heading requires stabilization to be on
(do (recover (set-stabilization #t))
(recover (redo r)))1))

5.4.2 El‘dac_H_

Compared to Erdac 4, the Erdac. ;. language has a substantially different design
and implementation. Syntactically the two languages look mostly identical,
however, with the notable exception of Erdac.,, requiring additional anno-
tations to support compilation to C++ source code; Erdac,, programs are

12http ://www.sphero.com/

121

http://www.sphero.com/

5. ErRrOR HANDLING

fully, statically type resolvable. Erdac,, is not a functional language, as its
functions are not values; as they are not values, they also cannot be Bad.

For an example of Erdac, ; code, suppose we have a C++ implementation
of a factorial function. We might declare the function’s pre-condition and
type with

(declare (factorial x) #:: (foreign [type (-> int int)])
#:alert ([negative-arg pre-when (< x 0)]))

Erdac,, is also implemented as a Racket library, but the library’s macros
target a different core language, and the generated code’s C++-based run-time
environment is more limited than Racket’s. More specifically, Erdac, . tar-
gets the core syntax of Magnolisp, which is a language and infrastructure for
complementing Racket’s language definition machinery to support source-to-
source translation into C++ [Hasu and Flatt, [2016]. Due to compatible core
syntax, an unmodified Magnolisp compiler is capable of translating Erdac, ,
code into C++. For example, below is a comment-annotated extract of C++
code generated for the Erdac, , expression (factorial x), where x is a vari-
able, and factorial is a function declared as above:

if (is_Bad(x)) { // whether argument ‘x° is bad
lifted = Bad(Nothing<Result<int>>(), AlertName("bad-arg"));
} else {
/2
if (is_Bad(lifted_1)) { // whether (< x 0) failed to evaluate
lifted_4 = Bad(Nothing<Result<int>>(),
AlertName ("bad-precond"));
} else {
Result<int> lifted_5;
if (Good_v(lifted_1)) { // whether (< x 0) holds
lifted_5 = Bad(Nothing<Result<int>>(),
AlertName("negative-arg"));
} else {
int const r7 = factorial(Good_v(x)); // call the primitive
}
}
}

That C++ code reveals that Erdac, , realizes the bad-value extension of prim-
itive functions at call sites, which is another difference to Erdag4. That differ-
ence allows for another one: Erdagy evaluates its arguments lazily, stopping
argument evaluation at the first Bad argument, except for handlers. That dif-
ference further means that it is generally not possible to store all arguments
for a failing operation. It is also not possible to store the function itself, as
Magnolisp does not support function values or pointers. Erdag, does not
implement failed expression history, but it still features alert-directed, implicit
error triggering and propagation. Currently, only the alert name and any
invariant-breaking value are incorporated into instantiated Bad values.

As Magnolisp only supports abstract user-defined data types, Erdac,’s
Good and Bad value constructors do not correspond to a record type (as in

122

5.5. Discussion

‘ (define tmpl (open-input-file from)) ‘

(define in tmpl)

(define tmp2 (open-output-file to))

(define in (open-input-file from))
| (define out (open-output-file to))
! (copy-port in out)
i (

(

close-output-port out)
close-input-port in)

(define out tmp2)

(copy-port in out) \ !

v (b) A file-copying routine written in
\\ [Erdag,, with only a single basic block.
o The code is sub-optimal in that the out
wy port may get opened needlessly even
if the in port was not. However, un-
like figure [5.Ta]s routine, this version
features safe resource cleanup.

(close-output-port out)
(close-input-port in)

(a) A potentially exception-throwing
file-copying routine written in Racket.
It is assumed that closing an opened
port will not throw.

Figure 5.1: The control flows of two routines of roughly the same functionality,
with basic blocks shown.

Erdac,). Rather, they are defined as operators constructing values of the ab-
stract type (<> Result T), where Tis a universal type parameter. In addition,
for (<> Result T), Erdac,, only requires some predicates and accessors for
inspecting values of the data type. All of these operators are polymorphic in
T, and implemented as primitives.

Erdac, s run-time library includes C++ implementations of the abstract
data types required by the language itself (e.g., Result<T> and AlertName,
which appear in the above listing). The library is made up of a single header
file, with only the C and C++11 standard libraries as dependencies.

5.5 Discussion

Our approach provides an API’s implementor with a way to express their
domain knowledge about the error behavior of functions. Any knowledge or
speculation about potentially useful recovery actions can also be included in
the API, as a selection of handler functions with some acceptable bad argu-
ments, to give the API client some predefined recovery options to choose from
(or not) depending on context.

One important aspect of error recovery is to ensure that resources are
not “leaked” even under abnormal conditions. In our approach, the lack
of non-local returns and automatic “bookkeeping” of successfully initialized
objects can facilitate straightforward and clear resource cleanup; no separate
mechanisms such as RAII"| [Stroustrup), [1997, section 14.4] or cleanup stacks
[Turner,2014] are required, and the ordering of cleanup actions stays apparent.
As illustrated in figure[5.1a] safe resource cleanup can read as simply as failure-
unsafe code, while also being easier to reason about.

13Resource Acquisition Is Initialization

123

5. ErRrOR HANDLING

5.5.1 Portability

One of the goals of our failure management solution is for it to also serve as
an error handling convention that is highly portable.

The bad-value extension of data types in itself places few requirements on
the run-time language; most essentially, a conditionally-branching construct
must be available for error checking, and it must be possible to define a
suitable wrapper data type (or types). The Magnolisp core language targeted
by Erdac,. is very limited, yet sufficiently powerful: it includes an if core
form; it supports abstract data types implemented externally in C++; and its
type system supports generics, allowing one wrapper type definition to be
parameterized in order to satisfy static type checking.

Allowing an operation that produced a bad value to be redone merely
based on information in the bad value is more demanding on the run-time
language, but not arduously so. Our experience with Erdag4 shows that
retrying an operation only requires the ability to store a function as a value
(along with any free variables), together with its argument values, and that
is possible in many languages. As long as all the relevant expressions can
be formulated in terms of function calls, it appears not to be necessary to be
able to reify an execution context as a delimited continuation [Felleisen et al.,
1988; [Felleisen), [1988], for example, although Racket would be one of the few
languages that supports them [Flatt et al.|, 2007].

5.5.2 Code Size and Optimization

Realizing transparent processing of bad-value-extended data involves glue
code whose size can vary heavily depending on how “dynamic” the code is,
and to where it is inserted (and how many times).

Erdac,, is at the “bloated” end of the code footprint scale, in that its
macros generate relatively primitive code, avoiding features such as first-class
functions, record types, and syntax objects, which are unavailable. Erdac,,
also inlines alert checking code at each call site; while this should provide
intraprocedural optimization opportunities for further compilation as C++, it
can also severely bloat the code, particularly as pre- and post-conditions may
also involve alerting calls.

Erdagy, in turn, generates relatively compact code. It does this by inserting
alert-checking code at definition sites, either right inside natively defined
functions, or into separate wrapper functions for primitives, meaning that
there is only one copy of the glue code per function. Calls to unknown
primitives in Erdai4 do not require even that, as it is only necessary to modify
calls to happen via a shared higher-order function that performs the required
work dynamically.

Yet another approach to code generation might involve a target core lan-
guage with special-purpose constructs for processing Result values. Thatkind
of approach could be expected to reduce core language footprints, with the
more error-semantics-aware language also potentially providing additional
optimization opportunities during further processing.

124

5.5. Discussion

5.5.3 Incorporating “Bare” Language

Erdagy (like all Erdas) defaults to doing implicit error checking and propa-
gation, but does feature a mechanism for locally switching to “bare” values
without implicit processing. That mechanism can be useful for example with
IEEE floating-point number operations, which themselves support abnormal
valuesfﬂ propagation of such values across multiple operations, and recording
of sticky error status flags in out-of-band state.

Erdag4’s let-direct expression unwraps its named argument values
(provided that they are all Good), evaluates its body expressions without im-
plicit error processing, and then wraps the result solely according to its data
invariant

Using let-direct we can, for example, perform multiple IEEE floating
point operations, and then only afterwards check for a not-a-number result:

(define (f a b x)
#:alert ([NaN post-when (nan? value)])
(let-direct ([a a] [b b] [x xI)
(£f1* (£f1+ 1.0 (f1/ a b)) x)))

In a post-condition, the name value gets bound to the function’s result. Thus,
with the above definition of £, the expression (f 0.0 0.0 10.0) triggers a
NaN alert, as value in that case is a Bad +nan. 0 due to 33 being undefined.

5.5.4 Error History Buildup, Capping, and Control

For some control flows, naive history recording can result in values that have
unacceptably large history. One likely scenario of this happening is where a
potentially failing function is called non-tail recursively. For instance, suppose
we have an Erdagy4 function sum-1/n such that it incorrectly computes Y.i_; 1,
forgetting to include a check for the lower bound; thus, instead of computing
the desired result, sum-1/n builds error history whose size is linear in n:

(define (sum-1/n n) #:alert ([not-gt® pre-unless (> n 0)])
(+ (/ 1 n) (sum-1/n (- n 1))))
(sum-1/n 5) ; =>
; (Bad bad-arg: #<procedure:+> 1/5
; (Bad bad-arg: #<procedure:+> 1/4
; (Bad bad-arg: #<procedure:+> 1/3
; (Bad bad-arg: #<procedure:+> 1/2
; (Bad bad-arg: #<procedure:+> 1
; (Bad not-gt0: #<procedure:sum-1/n> 0))))))

In practice, it is probably necessary to cap history buildup in some way.
Any history capping policy should account for language-specific factors re-
garding what parts of history may acceptably be lost, to avoid causing inconsis-
tencies or surprises in using language constructs that rely on the information.

14 Abnormal values include “subnormal numbers”, infinities, and “not-a-number” values.

15The let-direct construct is implemented by having a “syntax parameter” [Barzilay et al.,
2011]] determine (at macro-expansion time) which implementations of Erdag, operations to use
(i.e., ones using wrapped values, or not).

125

5. ErRrOR HANDLING

Where the information is merely shown as an error trace to the developer,
it seems reasonable to drop entries from the middle; this is comparable to
common practices in displaying stack traces. It might also be appropriate to
drop or compress duplicates of items that repeat (e.g., Bad bad-arg, above).
Existing logging solutions demonstrate other potential “log throttling” policy
options that might likewise fit the programming language context.

When error history is actually used by a program to affect its own behav-
ior, it would seem natural to give the program explicit control over history
recording, to ensure that all the necessary history is retained for long enough.
Interestingly, the Result values (also good ones) themselves might provide a
possible channel via which to communicate such preferences in a fine-grained
manner, with dynamic extent, perhaps in the form of a “contagious” flag to
indicate that history should be recorded.

Particularly for alanguagelike Erdac, +, which has a non-garbage-collected
target, we might also wish to allow explicit control over memory management
for error history. Rather than a mere flag, we might instead propagate a handle
for amemory “region” [Tofte and Talpin} 1994, [1997], to use for allocating those
values’ history, allowing their history to be freed all at once, perhaps upon
exiting the responsible error handler’s scope. Such memory management
with “explicit regions” [Gay and Aiken) [1998] can be both faster and more
memory frugal than heap allocation or garbage collection.

5.5.5 Bad Value Extensions vs. Monads

A monad [Wadler|[1995] is an implementation of a certain kind of collection of
operations. Monads serve as a popular way in functional programming to add
sequentialization, and to implement language with type-directed semantics.
One popular application is to implement implicit checking for bad values.

An error monad is a data type that represents either a “good” value, or
information about an error. Its monadic primitives apply monadic functions
only on good values; once one of the functions returns a “bad” monadic
value, the subsequent ones are skipped, and the bad value is the result of the
combined computation. This has an effect similar to a singular error value
extension, although the error information data type need not be a singleton
set.

Monads capture a fairly ubiquitous programming pattern, and as a com-
mon abstraction they can promote reuse of code, syntax, and tool support. A
number of languages support “sugary” notation similar to Haskell’s do syntax
for writing monadic expressions, for instance, and there are also language ex-
tensions to assist in producing monadic code [Kotelnikov,[2014;(Swamy et al.,
2011].

Monadic sequencing is not a natural fit for implementing error history
accumulation in our scenario, however. In our case functions should appear
total, enabling programming with “normal” syntax in direct style, so that
both good and bad results of subexpressions unconditionally share the same
continuation. Thus, a natural strategy for implementing history accumulation
is by either modifying the semantics of function application, or by extending
the applied functions with logic for bad value processing. Those are the
approaches we use in our Erda implementations, as discussed in section[5.5.2]

126

5.6. Related Work

Monadic expressions can still be useful for sequencing in Erda, but a mere
identity monad [Wadler, 1995] is sufficient to achieve the error-monadic effect
of not continuing with errors, due to the language semantics. Erdag, includes
Haskell-style do syntax, which is fixed to expand to a “bind” operation that is
like that of the identity monad. That operation’s definition in Erdag 4 is simply

(define (G>= v)
#:alert ([bad-arg pre-unless (function-with-arity? f 1)]1)
(£ v))

As the >>= function is not a handler, it does not get called with Bad values,
which is useful for short-circuiting expression sequences upon an error. For
example, the function compute-a-lot does not get called in the expression

(do [y <- (raise 'bad)]
(compute-some-more y (compute-a-lot 42)))

which is equivalent to

((raise 'bad) . >>= . (A (¥)
(compute-some-more y (compute-a-lot 42))))

whose result has a record of the failure of the particular >>= application.

5.6 Related Work

IEEE floating point [IEEE, [2008] NaN (not-a-number) value handling is similar
to our implicit bad value propagation scheme: with “quiet” (as opposed to
“signaling”) NaN arguments, most operations produce a NaN result. Thus,
badnesses can propagate through a larger computation, without any explicit
intermediate checks, leaving the programmer with more choice in choosing a
point of recovery. The IEEE standard’s default “exception” reporting behavior
for invalid operations of a floating point result type is also to produce a quiet
NaN. IEEE NaNs are encoded using bit patterns (within raw floating point
value data), rather than using a wrapper type, as in our approach; a way
to locally switch to IEEE error propagation in Erdag4 was demonstrated in
section5.5.3

Zi is a programming language that has a built-in error type, whose val-
ues are globally unique names; error values must be declared prior to use, but
they may be declared multiple times. Similarly to our support for bad-value-
extended data types, Zig features specific support for “error union types”
[Kelleyi, 2016], whose values are tagged as either of a built-in error type, or
of some other type t. The error union type of t can be specified concisely
as %t, and Zig also features specific syntax for conveniently processing val-
ues of such types. For example, Zig’s binary operator %% unwraps its left
operand where it is a non-error, or evaluates to its right operand otherwise,
whereas a %return expression similarly either unwraps any non-error value of
its subexpression, or returns with the error. Unlike Erda, Zig has no support
for implicit error processing, but one could write Erda-style error propagation

l(’http://ziglamg.org/

127

http://ziglang.org/

5. ErRrOR HANDLING

code manually by using error-union-typed variables throughout (i.e., also for
function arguments).

Rusﬂis a programming language that appears to have influenced Zig, and
it also features specific support for reporting errors in terms of sum types. That
support expects the use of Result types with Ok and Error value constructors of
user-selectable concrete types; i.e., Result is roughly like Haskell’s Ei ther type
constructor. Like Erda, Rust features hygienic macros, and uses them for pre-
defining syntax for purposes of error handling; the try! macro, for example,
has semantics matching Zig’s built-in %return construct. Rust enforces error
handling by issuing a warning about unused Result values. Rust has no
support for implicit error processing.

Applicative functors [McBride and Paterson) [2008] are another categorical
structure that has wide applications in programming, although monads are
perhaps better known. It is possible to define an “error applicative” that deals
in good and bad wrapped values, keeps computing in the face of errors, and
also accumulates error history. [McBride and Paterson! [2008, section 5] have
shown a example of such an applicative, one that otherwise behaves like our
error history extension for primitive functions, but which collates results into
an abstract “monoid” rather than building terms detailing the failed function
calls.

Swamy et al.| [2011] have presented a rewriting algorithm (for extending
the ML language) to insert the necessary glue code to allow programming
with monadic types m 7 as if they were of the bare type 7. The solution could
be used to achieve implicit, pervasive error propagation for a program that
is appropriately typed in terms of an error monad, but error monads do not
accumulate error history.

Kotelnikov| [2014] has extended Scala with similar functionality for type-
directed transformation. The macro-based extension is able to generate glue
code not only for monads, but also other computation types, making it usable
not only with error monads, but also error applicatives, for example. The
solution is not language wide, as only context expressions are transformed.
The desired computation type has to be explicitly specified for each use of the
context macro.

Kammar et al.| [2013] have extended Haskell with constructs for algebraic
effects [Plotkin and Power,[2001] and effect handlers [Plotkin and Pretnar} 2009],
with the extension implemented in terms of the Template Haskell [Sheard and
Jones|, 2002] and quasiquote [Mainland)| 2007] facilities of GHC. An algebraic
effect signature abstracts over computational effects, while an effect handler
modularly specifies a concrete implementation for such an effect interface.
As demonstrated by Kammar et al.| [2013} section 2.3], an effect handler can
specify an interpretation for a “failure” effect, for example in terms of an error
monad. GHC’s compile-time meta-programming facilities might similarly al-
low for providing usable syntax for our history-accumulating error processing
semantics.

Vhttps://www.rust-1lang.org/|(2016)

128

https://www.rust-lang.org/

5.7. Conclusion

5.7 Conclusion

We have described a highly portable error reporting and propagation conven-
tion in which errors are represented as normal data values, and in which all
operations are made to appear tota in effect, abnormal control is traded for
abnormal data. The convention is made possible by uniformly extending all
data types so that their values are distinctly either good or bad. The convention
is founded on the theory of guarded algebras, to provide a formal basis for
reasoning about convention-obeying programs’ error behavior.

We have shown that the convention is compatible with both explicit and
implicit language-integrated support. While errors are just values, and thus
manipulatable as such, a language can provide traditional-style “exception”
raising and handling syntax dedicated to explicit failure management. A
language can also provide “normal” algorithmic language syntax (allowing
programming in direct style), while still supporting implicit triggering and
propagation of errors as data values, even in a language-wide manner.

Such transparent error processing can be made more capable for seman-
tically rich programs; if any possible error conditions and their reporting
mechanisms are declared for each function, then the language can fill in the
glue code for either triggering a fresh error, or shielding the function from
being exposed to existing badnesses which it cannot handle. Thus, if an API
is correctly implemented and annotated, then none of its uses can induce un-
controlled behavior, giving some guarantee of robustness The automated
error processing’s freedom from side effects facilitates static program analysis,
which can also benefit its supporting language’s optimizations.

From a programmer’s point of view, pervasive and automatic treatment of
errors has the potential to make recovering from failures significantly easier.
In particular, inserting error handlers should become easier when (D they
interact with the normal control flow of data and not some exceptional control
flow, and (2) there is no need for explicit checking of error values at every call
site.

Acknowledgements

This research has been supported by the Research Council of Norway through
the project DMPL—Design of a Mouldable Programming Language.

18 A total operation is valid for all values that its parameter types could take.
The robustness guarantee does not extend to ensuring that stateful operations are invoked
in a correct and complete sequence, so that there can be no resource leakages.

129

CHAPTER

Mouldable-Language-Based
Niche-Platform Product Lines

“Vision without action is a daydream.
Action without vision is a nightmare.”

A Japanese proverb

This chapter presents a concrete but unproven vision of how the solutions so
far presented might be combined to build a niche platform software product
line, one that adheres to section [1.7s product-line strategy. The architecture
presented here is speculative, and while parts of the technology for it have
been implemented, the overall design has not been validated. 1 also fully
expect that some of the technical details sketched in this chapter would turn
out to be poor design, or even outright unimplementable as described. My
aim with this exposition is to give an idea of how the individual technologies
might fit together, which also then sheds light on the motivations behind those
technologies, since they were created with this kind of use case in mind.

As a basis for the presented product-line architecture, a mouldable pro-
gramming language is required. With Magnolia and Magnolisp as starting
points, I could go in either direction to build a hybrid language that combines
some of the features of both languages for more fully realized mouldability
As the implementor of Magnolisp, however, I am better prepared to specu-
late on what would be required to make Magnolisp sufficiently mouldable,
and so I have chosen to use a hypothetical, more advanced Magnolisp as a
language-technological basis for this chapter’s product-line architecture.

For the remainder of this chapter, I shall refer to the existing Magnolisp
technology as Magnolisp® (for “version 0”), with the imagined Magnolisp
technology being assumed otherwise. I may in places use the superscript “v1”
to emphasize that I am referring to the latter.

!Bagge has previously explored the direction of having Magnolia support variability [Bagge,
2010a]] and extensibility [Bagge, [2010b], but those mechanisms are not in use in the present
Magnolia.

131

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

6.1 The Magnolisp Language Family and Infrastructure

The language infrastructure of Magnolisp¥! is called Magnolisp+, and features
not only a macro system, but also a configurable mglc compiler, allowing it
to support domain-oriented flavors of the language that also differ in their
core language. Magnolispiang shall denote any language implemented on top
of Magnolisp=, Magnolisppsse shall denote any language featuring the default
core language of Magnolisp 'pase, and Magnolisp a1+ shall denote any language
featuring some alternative (and incompatible) core language.

The central Magnolispyp,se language is Magnolisp, (for “reasoning” or “re-
stricted”), or just “Magnolisp.” That Magnolisp is similar to the current Mag-
nolisp"? language, particularly with respect to its static reasoning friendly core
language; however, it is also intended as a product line’s language for soft-
ware composition, and has for that reason been augmented with a Magnolia-
influenced component system featuring concepts and external linking. Mag-
nolispy is the mouldable programming language of this chapter’s PLA design,
but it has a close relative in Magnolispg,4,, which may generally be used as an
alternative to Magnolisp,. Magnolisp,, Magnolispc,, Magnolispgy, etc. are
Magnolispai: flavors, intended for implementing types and their operations
for Magnolisppase languages, rather than for implementing entire programs.

Magnolisps are generally all alike in a number of ways (although exceptions
can be made to suit the domain orientation of a given language flavor):

o They are implemented as a Racket #lang.
e They have a Racket-themed surface syntax.

e Their name resolution is compatible with Racket’s.

They use Racket’s module system natively for namespace management.

Their foreign language interface descriptions are exported via submod-
ules.

e They all expose Racket’s macro system for self-extension, and use it as a
platform for reusable language features, as suggested in section 3.10.1

Magnolispiang*! languages may have a slightly different appearance com-
pared to Magnolisp"?, as they feature additional shorthand annotation syntax;
for example, #:: ([type Int]) may alternatively be written as #: type Int.

6.2 A Product-Line Architecture

This chapter’s product-line architecture supports product configuration, soft-
ware composition, and building, as outlined in figure In more detail, the
technologies used to manage those high-level aspects of the software produc-
tion are:

¢ Konffaa is used as a configuration manager, with its Racket-based konf-
faalanguage used as a variant specification language. One variant must
be selected before software composition or building, by invoking konf-
faa on the desired variant specification; this is similar to invoking a
GNU Autotools based configure script before building, except that any
configuration options come from the selected variant specification file,
rather than being specified through command-line arguments.

132

6.2. A Product-Line Architecture

Magnolisp
program
N
| N.uses
1 \
| 4
. ! component
Magnolisp : pool
1
1
X
vendor |
language X
program ,
1
1
uses
variant
@ specification
pool

\
deployable
binary >
. , \

.
.7 Uses luses t.uses

.
/ «_ v
current current
composition vendor configuration
include tools include
files files

Figure 6.1: A product-line architecture overview, showing configuration, API,
and build management at a high level. The component pool serves as an API
knowledge repository. The collection of variant specification files serves as
a configuration knowledge repository. The "Makefile" and vendor tools in
turn encode build knowledge. The konffaa and make CLI tools are used to
trigger configuration and build actions, whereas simulation of the program
may be driven through Racket and the magnolisp language.

133

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

e Magnolisp; is used for composing a program for each variant. The mag-
nolisp source file exporting the program can be named in the variant
specification, if there is more than alternative program source file. A
program-composition-expressing source file may have a compile-time
dependency on the variant specification to allow for conditional compi-
lation, which may be sufficient for expressing the necessary composition
variability.

e GNU Make is used as a high-level build manager, and its language is
thus used to express configuration-dependent details about how to in-
voke other tools for building and packaging the program. The makefile
describing those details can depend both on Konffaa and Magnolisp out-
put, describing both configuration parameters and inferred details about
the composition. Other tools invoked by the makefile might include a
vendor SDK’s build manager, in which case a suitable build description
may have to be generated as input for that lower-level build manager.

The product line requires a pool of core assets, and these can be imple-

mented in a variety of languages:

o The konffaa language is used to specify parameters for configurations.
Additionally, any vendor-supplied project managers’ languages may be
used to specify target-specific details.

e GNU Make’s language is used to encode build instructions for the
relevant combinations of components and targets. Additionally, any
vendor-supplied build managers’ languages may be used to specify
target-specific details.

e Magnolispiang languages and vendor programming languages may be
used to implement software components. Any component implemented
in a target language must be given a Magnolisp declaration, to enable
its management by Magnolisp; Magnolispa1+ languages automatically
generate a Magnolisp declaration for their Magnolisp-facing exports.

e Racket (and its #1lang mechanism) can be used to implement further
Magnolispiang languages as libraries.

e Any resource files (e.g., application or user interface description files)
are specified in vendor-specific languages. Alternatively, macro-defined
constructs might generate any auxiliary resources they require, as a side
effect during macro expansion.

6.3 Managing Configurations with Konffaa

To make it easier for humans to refer to interesting product variants, it is
useful to give each one of them a descriptive name. The Konffaa configu-
ration manager—introduced in section [1.3.T}—allows for this, also featuring
command-line completion of variant names when invoking the konffaa CLI
tool. Each variant name maps to a "name.var.rkt" file, expected to be written
in the konffaa Racket-based language, and to state the defining configuration
parameter values for that variant.

Before building a product, one variant must first be selected by invoking
konffaa with a variant as an argument, as illustrated in figure Assuming
the selected variant’s axioms hold, the invocation results in a set of include

134

6.4. A Macro-Implemented Component System

variant specifications

anyxporter—demo-bbl0.var.rkt configuration files

current.var.rkt

(in Racket)

current_config.rb

(in Ruby)

currentsCconfig.mk
NAME < anyxporter-pro-bbl0
P FORM := bbl0

IS_PRO := true

anyxporter-pro-bbl0.var.rkt

#lang konffaa

(require "bbl0.rkt")

(define-variant** Pro (BB10)
(define-field kind 'pro))

anyxporterflitetggiQizfr.rkt

Figure 6.2: Configuring the Anyxporter codebase for its “Pro” BlackBerry 10
variant with the konffaa tool. Only the GNU Make, Racket, and Ruby include
file formats are included in the diagram.

files being generated in various languages. The include files can be used for
conditional macro expansion in Magnolispjang languages, conditional compi-
lation in vendor languages (e.g., where they feature the C preprocessor), or for
specifying conditional build instructions.

6.4 A Macro-Implemented Component System

As we discussed in section[2.4.2} macros can be used to implement component
systems. Pattern-based macros in particular are commonly used to compose
and parameterize code statically, and thus they can already serve a similar pur-
pose as they are. However, for a cross-platform, domain-engineered codebase
it seems worthwhile to standardize on a more structured notion of a program
implementation fragment, one supporting separate interfaces.

Towards that end, Magnolisp, features a macro-implemented, Magnolia-
inspired component system with static linking. The component system and
language is implemented as a library, and could be reused by other Magnolisps
where useful, provided that their run-time core language meets a bare mini-
mum of compatibility requirements. Like Magnolia, the component language
features concepts, axioms, and satisfactions, but the language otherwise re-
sembles that of Racket’s units [Culpepper et al.,|2005;|Flatt and Felleisen), 1998}
Flatt and PLT)} 2010], or rather the static information managing define- and
/infer subset of it. Magnolisps’ component naming convention also follows
that of units, in that concept and component names are suffixed by #* and @,
respectively.

Following terminology by |Flatt and Felleisen|[1998], I say that a Magnolisp
component is linked with others to form a compound component. I say that
a Magnolisp component is invoked when its code is subjected to compile-time
evaluation (or macro expansion), and its exported bindings are made available
to a particular local or top-level context.

A component language need not be limited to defining, linking, and in-

135

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

voking components. Goguen| [1984} 1986] has advocated having a language
of module expressions that supports a rich variety of methods for program
construction, and in particular allows for combinations of semantically well-
behaved component transformations to be specified in a structured manner.

A macro-based component system implementation provides opportuni-
ties for extending the component language with new syntax, particularly if
the implementation includes a known API for accessing components at the
meta level. While it is possible to express higher-level component constructs
in terms of more primitive ones, as has been demonstrated by|Waddell and Dy-
bvig|[1999], an API for accessing component representations makes it possible
to implement new component language primitives as well.

Roughly, an atomic component can be represented as unevaluated code for
its definitions, and information about its imports and exports. A compound
component, in turn, can be represented as a set of its constituent components,
and information about the overall component’s imports and exports. More
detailed examples of compile-time component representations in a Racket-
macro-based implementation have been given by [Culpepper et al.|[2005) sec-
tion 4.3].

Racket provides several building blocks that a component system imple-
mentation for Magnolisp might use:

o Racket supports module contexts and internal-definition contexts that min-
gle binding forms and expressions [Flatt, 2015]], and which also support
mutual recursion for their definitions. Such a context is suitable both
for defining components and invoking compositions thereof in order to
bring their bindings into the context.

o General compile-time bindings [Flatt et al., 2012] are suitable for storing
information about components by their name, in a lexical scope respect-
ing way. Like macros, such bindings may be defined with define-
syntax, and the bindings’ values are computed at compile time, but
unlike macros, their values need not be syntax transformation functions.

e Syntax-quoting provides a way to store code in compile-time state with-
out expanding it, but with its lexical context intact. This makes it pos-
sible to delay the (compile-time) evaluation of code containing uses of
unbound (or late-bound) identifiers of requires interfaces, while still
maintaining referential transparency for other identifiers. Quoting as
syntax can be done for instance with the quote-syntax core form, or the
derived #’ shorthand syntax.

o A rename transformer is a special macro that substitutes an identifier for
another, and such a macro can translate between component internal and
external names. Firstly, upon static parameterization of a component, a
renaming may be defined to introduce a mapping for a late-bound pa-
rameter, to translate its uses to those of an externally-specified, already-
bound identifier. Secondly, a renaming may be defined to expose a
binding (under a desired name) that maps to a component-defined, in-
ternal binding, as part of invoking a fully-implemented component in a
particular context.

e Racket’s facilities (such as the make-syntax-introducer function) for
manipulating identifier scopes may be used to explicitly control scoping,

136

6.4. A Macro-Implemented Component System

for instance to ensure that no clashes between components’ internal
names can occur as their code is being multiply instantiated for the same
context.

e Sub-form expansion and analysis (for example in terms of local-expand
and syntax-case) may be used to discover bindings appearing at a
component’s top level, even when late-bound identifiers appear on the
right-hand sides of the definitions for the bindings. This makes it possible
to use macros within a component body, while still being able to examine
(perhaps partially) expanded components to determine what bindings
they contain, perhaps to infer or check the component’s exports.

The above facilities are all suitable for implementing component language
that is fully static, such that all implementations are resolved statically; in
particular, components need not be run-time values that merely implement a
statically known interface. The simple define<>and use example of figure[2.3]
already demonstrated the first four of the six facilities.

Itis quite common in C and C++ to define macros in API-describing header
files, and Magnolisp (and Racket) can similarly export macros from modules
[Flatt, 2002]], as abstractions over syntax. It is also possible to allow component
interfaces to contain macro definitions, as has been shown for the combination
of Racket units and macros by [Culpepper et al.|[2005], and Magnolisp, does
allow concepts to contain definitions of syntax extensions. Furthermore, unlike
in the case of units, in Magnolisp all component uses are known statically,
which also makes it possible to allow its component implementations to import
and export macros.

6.4.1 Foreign Component Interfaces

In this product-line arrangement, an important motivation for having a com-
ponent system is to put APIs over target-specific implementations. This in turn
makes it important to have a sufficiently capable foreign function interface (FFI)
mechanism to allow target languages to implement those APIs, preferably in
a way that retains the genericity aspect of mouldability.

Magnolisp*? can already declare foreign types and functions, but the Mag-
nolisp¥! component system would benefit from the ability to statically pa-
rameterize foreign APIs, whose implementations are opaque to Magnolisp;.
As the available mechanisms for such parameterization vary between target
languages, any solutions should probably vary as well, to ensure that it is rea-
sonably convenient to craft a foreign API according to the FFI's conventions.
The chosen FFI convention might not only depend on the target language, but
perhaps also on the nature of the API, to best facilitate lightweight foreign
implementations.

Parametric polymorphism is a form of generics that is well supported
by a number of potential target languages, and thus any FFI mechanisms
achievable in terms of generic foreign types and functions should be sharable
across targets, meaning that separate Magnolisp declarations might not be
required for implementations in different languages. The idea is simply that
generic types and functions should be able to adapt to whichever types we
ultimately configure for our components, and that the type context of the uses
will tell the target language what it needs to know about our configuration. For

137

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

example, in these Magnolisp definitions we assume that the foreign entities
Box-t, box, and unbox will adapt to the chosen box element type BoxE:

(define-concept Box*
(typedef/abstract Box) ; abstract box type
(typedef/abstract BoxE) ; abstract element type
(define/abstract (box e) #:type (-> BoxE Box))
(define/abstract (unbox b) #:type (-> Box BoxE)))

(define-component Box@
#:requires ([BoxE #:from Box*]) ; BoxE’s signature is as in Box*
#:provides (Box*) ; allinBox* (excludingany already required BoxE)

(typedef/foreign Box-t) ; foreign type named Box_t
(typedef Box (<> Box-t BoxE)) ; type alias for Box_t<BoxE>

; foreign functions, with the rkt. expressions specifying simulation
(define/foreign box rkt.box-immutable)
(define/foreign unbox rkt.unbox))

(define-satisfaction Box@-is-Box*
; Box@implements Box# (with any type BoxE)
[Box@ #:models Box*])

For truly general support, we must be able to parameterize both types and
functions, but the notion of a component does not necessarily need to exist on
the foreign language side; it is up to the component system to ensure consistent
use of foreign APIs in relation to a component. After any component language
has been macroexpanded away, the remaining uses of foreign entities will be
limited to specific abstract types and functions. Those uses may have to be
parameterized, and for Magnolisp it should be sufficient if foreign types can
have types as static parameters, and if foreign functions can have either types
or functions as static parameters. For a target language that supports such
types and functions, it should be possible to define an FFI for Magnolisp
such that it allows for the full Magnolisp component language to be used on
target-language-implemented components, and such that component linking
happens statically at the level of target language source code.

In the C++ language, static configuration of data structures and algorithms
is possible by specifying concrete types and functions as template arguments.
As an example, we might consider a variant of the modify-first! function of
section[1.4.2} one for which the replacement-value-computing function is spec-
ified statically rather than dynamically. We might specify that computation as
a “functor” type (i.e., one that implements operator()), and we might allow
any Collection type for which get_first and set_first is implemented (in
terms of ad-hoc polymorphism). We can leave it to the functor named by the
Modify template parameter to determine the supported element types:

template <typename Coll, typename Modify>
void modify_first(Coll& coll) {
set_first(coll, Modify() (get_first(coll)));

138

6.5. Composing Programs in Magnolisp,

}

Armed with such parameterization facilities in the target language, what re-
mains is to ensure that Magnolisp’s FFI allows passing of those parameters,
and that the component system can keep track of which parameters to pass.

Target languages lacking the static expressiveness of C++, on the other
hand, may require alternative FFI solutions to work around their limitations.
One might, for example, accept some dynamic overhead in component compo-
sition; mbeddr does so in its default configuration of connecting components
via function pointers in its generated C code [Voelter et al.|[2013a].

Another alternative is to bring the target languages under Magnolisp+
control, by hosting them as S-expression-based macro-enabled target-language
reformulations (roughly in the style of C-Mera), to make their code less opaque
to the Magnolisp» environment than the ultimate target languages are. This
may enable the use of the Magnolisp component system itself to parameterize
the not-so-foreign code, and in that way instantiate the required specializations
of that code, translatable quite directly for the actual target. Target-specialized
flavors of Magnolisp are discussed further in section 6.9}

6.5 Composing Programs in Magnolisp;

While components may be implemented in a variety of languages, it is Magno-
lisp;’s role in the product-line architecture to manage the components, express
program compositions, and prepare them for targets, asillustrated in figure[6.3|

To specify the different compositions of a line of products, there might be
just one Magnolisp program that refers to different configuration parameters
in creating an appropriate composition for each product variant. For example,
suppose we wanted to compose a compass application for both bada and Tizen,
with the APIs, components, and desired compositions illustrated in figure[6.4]
To express the compositions in code, we might use section[1.4.6[s static-cond
to select the appropriate sensor component for the target platform, referring
to the configuration parameters in "config.rkt":

(require (for-syntax "config.rkt")) ; as generated by Konffaa

(define-compound CompassApp@
#:provides (run) ; run’ssignature is known from Engine@
#:1link ; together three components
((static-cond
[is-bada? BadaMagneticSensor@]
[is-tizen? TizenMagneticSensor@])
OpenGlCompassView@ ; assume OpenGL ES for all targets
Engine@)) ; platform-agnostic application engine

(define (run-main) #:export ; program entry point
(invoke-component CompassApp@) ; bring run into scope

(run))

With a particular configuration chosen, raco make will take care of rebuild-
ing Racket bytecode as required, to match the configuration; if "config.rkt"

139

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

Magnolisp
program
source |
file SIS

. N <
P - N N ~ -~
P - , 7/ N = ~ N .
_-"uses ,’uses |macroexpand \\#lang ~ Specifies

- - // \ \‘
current 2 i A |
Magnolisp current
component

conﬁg'u ration pool core magnolisp program
(config.rkt) program composition

raco make

Magnolisp
program
bytecode

mglc \racket

target
language simulated
program execution

source (in Racket VM)

file

Figure 6.3: The composition of a product variant’s application logic may
be expressed in magnolisp’s component language. Linking of components
may be conditional on the Konffaa-generated "config.rkt" file that lists the
configuration parameters of the variant. A program composition may be
further processed to produce a target-language equivalent, or executed in
the Racket VM (to the extent that simulation behavior has been specified for
external implementations).

CompassApp@ CompassAppe
(Tizen) (bada)
has has _has has |has has
< T
OpenGlCompassView@ TizenMagneticSensor(@ Enginel@ BadaMagneticSensor@
\ is uses uses/
CompassView” MagneticSensor”

Figure 6.4: bada and Tizen compass application compositions, whose
platform-agnostic Engine@ refers to sensor reading and view rendering func-
tionality only via the abstract MagneticSensor* and CompassView* APlIs.

140

6.5. Composing Programs in Magnolisp,

gets replaced by a different configuration, raco make should detect the change.
It is not necessary to switch configurations for purposes of simulation, if the
selected configuration’s foreign operations have Racket implementations. To
the extent that they do, the program’s operations (or axioms) can readily be
invoked in a “simulated mode” within the Racket VM.

A Magnolisp component’s #: requires and #:provides interfaces are spec-
ified explicitly, which should help the programmer keep track of them, even
without specific IDE support for inspecting compositions. Like Racket’s units,
Magnolisp’s components distinguish between external and internal names
[Flatt and Felleisen) [1998]]. In Magnolisp, a correspondence between the two
kinds of names is established in terms of #:requires and #:provides clauses,
which allow the renaming of individual imports or exports #:as something
else, or assigning a #:prefix to all imported or exported names. Specifying
renamings with the same clauses is also possible for component invocations,
but in that case the mapping is between component-external and invocation-
context-local names. Requires and provides are not applicable to concepts and
satisfactions, which are defined solely in terms of external names.

Component bodies” internal definitions stay internally scoped unless ex-
plicitly exported with #:provides. Any externally sourced definition should
be declared with #:requires, or its name should be bound in an outer scope
to a definition not involving dynamic extent (typically a top-level type or func-
tion). Component linking by default works by matching external names, and
renaming may be used to get names to match as desired. Linking in terms
of unit-style “tags” [Culpepper et al., 2005] is also supported, for scenarios
in which name-based linking becomes unwieldy. Within a #:requires, it is
possible to reference a signature #: from an existing concept, to avoid having to
re-declare it; this is unnecessary where the connection is obvious from context.

Magnolisp’s component language constructs include:

o define-concept: Defines a named concept, whose interface should only
contain abstract types, abstract functions, and macros. A concept may
implement axioms, which are not a part of the interface.

e define-component: Defines an atomic component. A component may
have both #:requires and #:provides.

o define-compound: Defines a compound component. Unless explicitly
specified, #:requires its components’ internally unsatisfied imports.
Unless explicitly specified, #:provides its components’ exports that are
not linked internally.

o define-satisfaction: Defines a named claim stating that the specified
component satisfies (or #:models) the specified concept. This establishes
a connection between a concept and one or more of its implementations;
unlike in Magnolia, doing so may effectively enlarge the interface of the
implementation, since a concept’s interface may include macro defini-
tions.

o define-axiom: Defines a named axiom.

e invoke-component: Invokes a component by its name. Unless otherwise
specified, uses the local context’s bindings of the same name to satisfy
any #:requires. Unless otherwise specified, binds any #:provides
locally under their external names, excluding any definitions that the

141

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

same invocation #:requires under the same external name (since they
then are already bound under that name).

Magnolisp’s components can be used in the small, as a substitute for higher-
order functions (with a different parameterization time). For example, we
might create an anonymous component to specialize section[6.4.1[s Box@, and
immediately invoke it for a local context in order to bring its export bindings
into scope:

(define (Int-box v) ; (-> Int (<> Box-t Int))
(invoke-component Box@ ; binds all names of Box* locally
#:requires ([Int #:as BoxE]))
(box v))

Should some of the above syntax seem verbose for what it does, the ad-
vantage of Magnolisp is that shorthand syntax can readily be defined for use
cases that turn out to be common, even if that use case is only common in a
particular product line.

For Magnolia’s built-in component language, there are plans to introduce
constructs for the domain of algebraic specification. The planned constructs
are for defining congruences based on predicates (and inducing the related ax-
ioms), and for deriving component implementations for congruence-induced
quotient constructions, for example. Ideally, Magnolisp, would be able to
support the implementation of such constructs as macros.

There are limits to what can conveniently be implemented merely based
on macro-captured information, without separate static analyses phases for
inferring further information. Macros can certainly also perform static analy-
sis, as demonstrated by Typed Racket [Tobin-Hochstadt et al.|,[2011], but some
features are perhaps most practically implemented in collaboration with the
Magnolisp compiler. Where custom core language is added to support a fea-
ture, however, and Racket VM execution is also required for that feature, one
should be mindful that the code for Racket execution may then also require
translation for the added core language (as mentioned in section[2.3.2).

6.5.1 Using Program Compositions

Magnolia allows a component to be designated as a program, which results in
the generation of a CLI for accessing its available operations. As Magnolisp
is intended to support a variety of execution environments, it makes few
assumptions about how a Magnolisp program will be launched. It is up
to the programmer to decide which “entry point” function (or functions) to
export to the target language for purposes of running a Magnolisp program.
It is furthermore up to the programmer to write any C++ main function for
invoking the Magnolisp entry point from the command line, for example, or
whatever else may be required for the particular product variant.

If one wants to handcraft an application’s user interface for a platform-
faithful look-and-feel, a Magnolisp “program” might actually just be a library
of application logic, to be used from hand-coded user-interface code. In the
case of Qt, for example, one might expose QMLE]bindings toa C++ translation
of that logic, for purposes of programming a user interface.

2QML is Qt’s domain-specific UI “markup” language.

142

6.6. Cross-Component Error Handling in Magnolispg,4,

Magnolisp as an extra language layer with knowledge of domain-engi-
neered APIs provides opportunities for automating the generation of foreign-
language bindings. In addition to exposing a target language interface (e.g.,
for Racket using provide, or for C++ using #:export) for generated code,
Magnolisp might be made to additionally generate QML or Lua bindings for
specially annotated APIs, for example, should that be useful in a given product
line.

To assist in implementing test configurations, Magnolisp’s component lan-
guage mightinclude an operator for producing a routine for invoking a compo-
nent and running all of its associated axioms, with semi-randomly generated
data as arguments. Such routines could then be used to implement an entry
point for a test program.

Another example of potentially useful component language is mbeddr’s
mock component [Voelter| 2014] construct for turning a declarative specification
of behavior in a specific scenario into an component that implements that
behavior, but only for when the scenario unfolds as declared (i.e., the expected
sequence of calls is made on the component).

6.6 Cross-Component Error Handling in Magnolispg, 4,

Magnolispg,, is alanguage derived from Magnolisp,, one that features implicit
propagation of error information in data values, as described for Erda in
chapter[5] Magnolispg,g, has failed-expression-history recording disabled by
default, but does provide explicit control over where recording happens, along
the lines suggested in section[5.5.4] History redoing is not supported, however,
to ensure portability, and to avoid inconsistencies between original and replay
execution in cases where side effecting operations are used.

Magnolispg,4,’s error propagation is implemented in terms of macros, and
like Magnolisp,, the language uses Magnolisppase as its core. Magnolisp-pase
includes specific language for error propagation to allow mglc to optimize in
an error-aware manner and to emit more semantically rich output. Magno-
lispg,4, may nonetheless transcompile to more cluttered code than Magnolisp,,
which is the tradeoff to be made in choosing between #lang magnolisp versus
magnolisp/erda.

If desired, it is possible to allow that tradeoff to be made for individual
definitions or code fragments. For example, section showed Erdacgy’s
let-direct expression for switching off implicit error processing for a code
block. Erdagu also features a define-direct form for defining an entire
function with implicit processing disabled, so that section [5.5.3[s example
function f can be written more concisely as

(define-direct (f a b x)
#:alert ([NaN post-when (nan? value)])
(f1* (£f1+ 1.0 (£f1/ a b)) x))

Since Magnolisp, and Magnolispg,4, share the same core, it should be quite
possible to adopt the above idea for both of the two languages to make them
duals of each other with respect to their error processing behavior. That
is, Magnolisp, could be the “direct-mode” language for Magnolispr,4,, and
Magnolispg,4, could be the “Erda-mode” language for Magnolisp;, with forms

143

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

such as let-direct and let-erda provided for locally switching between the
two modes.

It is also possible to adhere to Magnolispg,4,’s error reporting convention
without any specific language support, thus allowing it to serve as a cross-
language convention, as desired. Some Magnolisp variants might opt to use
the convention implicitly for error reporting at their APIlevel, or even for their
internal error propagation. Other variants might support the convention more
explicitly (e.g., in the style of Zig), thus leaving the programmer in control over
the generated error processing code.

The readability of Magnolispp,se languages” C++ translation is enhanced
through mglc’s use of target-language-defined abstractions relating to error
processing, in order to reduce clutter and to make semantics clearer. For where
error checks remain, the back end emits mgl_LIKELY and mgl_UNLIKELY macro
uses as branch prediction hints, indicating the non-error case as likely; these
macros can be implemented for example in terms of GCC’s __builtin_expect
function, where available.

6.6.1 Resource Cleanup

A concern closely related to error handling is that of resource cleanup. To al-
low the cleanup action for an allocated resource to be specified in the syntactic
proximity of the allocation expression, Magnolispr,4, features begin-defer
and defer constructs. Their use is illustrated by the following copy-file rou-
tine, whose “plain” version appeared in figure[5.1b} The deferred expressions
essentially get moved to the point of exit from the enclosing begin-defer
block, and there is automatic bookkeeping to keep track of the defer expres-
sions that are actually reached during the evaluation of the block:

(define (copy-file from to)
(begin-defer
(define in (open-input-file from))
(defer (close-input-port in))
(define out
(if (good-result? in)
(open-output-file to)
(raise 'undefined)))
(defer (close-output-port out))
(copy-port in out)))

Magnolispr,4,’s defer construct also supports an #: on-error modifier to in-
dicate clean-up that should only happen when the begin-defer block exits
with a bad value, to allow a successfully initialized resource to be preserved
forlater use. The results of deferred actions themselves (whether good or bad)
are ignored. Thus, a plain defer is like the language’s scope(exit) state-
ment or Zig’s defer, whereas defer #:on-error is like D’s scope(failure)
or Zig's %defer [Cehreli| 2016} [Kelley| [2016].

The begin-defer and defer constructs are implemented as macros, with
each appearance of defer replaced with an assignment to a fresh bookkeeping
variable, to indicate that it was reached. The primary restriction in specifying

3http://dlamg.org/

144

http://dlang.org/

6.7. A #lang Configurable mglc

deferred actions is that they may not use variables that are not in scope in the
internal-definition context of the enclosing begin-defer.

A resource-cleanup abstraction of this nature has general appeal, and the
bookkeeping strategy is also generally applicable, suggesting that these macros
might be worth adapting to some other flavors of Magnolisp as well. In doing
so one would have to account for any non-local control transfers in those
languages. Furthermore, the #: on-error syntax would probably have to be
excluded for flavors that lack a convention for error handling.

6.7 A #lang Configurable mglc

Magnolisp has a conservative, constrained language design in order to better
support reasoning about program compositions. For purposes other than ex-
pressing program compositions, it may be desirable to have flavors of Magno-
lisp that make different design tradeoffs, for example trading static reasoning
ability for dynamism. As such design tradeoffs would tend to also impact
core language, Magnolisp~ includes a mechanism for allowing a #lang to con-
trol its compilation, so that it can instruct the compiler to make compatible

assumptions about expected core language.

Magnolisp*?’s channel for communicating information to mglc is through

a submodule, as described in section Magnolisp*? already configures
mglc by specifying the desired “runtime” libraries (which declare information
about the actual C++ runtime APIs) through the magnolisp-s2s submodule:

(module magnolisp-s2s racket/base
(#%module-begin

(define-values (prelude-1st) '(magnolisp/2014/prelude))
(#%provide prelude-1st)))

The mglc¥! compiler uses the same channel for its options, also accepting
options relating to core languageﬁ In particular, magnolisp-s2s defines an
alt-core? boolean variable, which may be set to indicate that the module is
implemented in a different core language. If that is the case, then there is also
expected to be a magnolisp-alt submodule supplying the implementation,
and specifying its core languag magnolisp-s2s then merely declares the
Magnolisp-pase interface, so that Magnolisp; can still serve in its software
composition role. Figure [6.5|illustrates the submodule communication of an
example Magnolispai: module.

To specify a Magnolisppase interface for a Magnolispa;+ module, its con-
stituting types and functions must be flagged as #:magnolisp to make them
available to mglc, and also provided to make them available to Racket. The

% As the options are passed on a per-module basis, this strategy even makes it possible for core
language adjustments to be dependent not only on a module’s implementation language, but also
on its content.

5To go beyond selecting from a fixed set of core language choices (as assumed in this chapter),
the alt-core language might be specified as a Racket module implementing its compilation, thus
giving each #lang open-ended flexibility in controlling its transcompilation.

145

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

program.rkt d.rkt d-cxx.rkt

#lang magnolisp require |#lang magnolisp X #lang [magnolisp/cxx
. ; @ re re

(program composition) | ———>{ (define-concept D") &) (type and function

(define-component CxxD@)

implementations
for cxxD@)

d-cxx.rkt (core)

(module d-cxx magnolisp/main
(#%module-begin

exports
compiles

magnolisp-s2s (submodule)

inserts

#%module-begin

inserts

loads | —n prelude-lst ="' (magnolisp/prelude) "

alt-core? = #t
mglc

maybe™-.| |regneliseralt (submodute) |
loads "N prelude-1st = ' (magnolisp/cxx/prelude)
alt-core = 'cxx

ool

Figure 6.5: A "d-cxx.rkt" module written in the magnolisp/cxx language.
The language has its own runtime library, and requests the Magnolisp: cxx core
language from mglc. When mglc compiles a Magnolisp "program.rkt" that
requires "d-cxx.rkt" (via the “d” component definitions in "d.rkt"), it need
not load magnolisp-alt unless "d-cxx.rkt"’s Magnolisp API actually ends
up being used. (The name “d” comes from figure[6.6])

effect of the #:magnolisp flag is to record the flagged definitions’ declara-
tions in the magnolisp-s2s submodule in the Magnolisp core language and IR
format, but marked as having an alternative-core implementation; mglc can
access magnolisp-s2s information as necessary when compiling a Magnolisp
program, with the guarantee that the same core language is used throughout.

Each #:magnolisp export may require further annotations for any infor-
mation that Magnolisp a5 compilation requires for static analysis, but which
cannot be inferred due to the nature of the Magnolispa;+ language. For ex-
ample, for Magnolisp pase code we can infer build dependencies based on
uses of types and functions, but we might not want to attempt that with a
Magnolispait, depending on its characteristics.

Transcompilation of Magnolispa1+ modules is driven by the compilation
of Magnolisppase code, which actually determines the program composition,
and thus the inclusion of Magnolispa1: modules. Only a single target lan-
guage based implementation file gets generated for all the Magnolispjang
language of a program, which simplifies building, and opens up possibilities
for Magnolisp variants to interface with each other within mglc. However,
Magnolispai+ modules are not processed together with Magnolisp-pase IR all
the way through a compilation pipeline, due to the differing core language;
alternative core language processing happens initially separately, already due
to Racket’s separate compilation into bytecode.

To compile a Magnolispai+ module, mglc first loads its magnolisp-alt
submodule, which contains the implementation’s IR, and specifies the appro-
priate compilation configuration for it. The configuration must be compatible
with the overall compilation pipeline, so that the linking of Magnolisppase

146

6.8. More Dynamic Portable Programming in Magnolisp,,

and Magnolispai: code becomes possible at some point during compilation.
Linking should at the latest become possible when all the code has been trans-
formed into the target language IR.

A Magnolispai¢’s compilation phases are determined by the combination
of its core language and the requested target language. Like the Haxe source-
to-source compiler, for instance, Magnolisp+ supports multiple compilation
target languages (not only Racket and C++). The desired target is specified
through CLI or API options, and not by a #lang; the set of supported targets
is affected by the used core language, as not all Magnolispai: cores support all
targets, and an attempt to use an incompatible combination causes an error.

As Magnolisp~ supports both different source (core) languages and differ-
ent target languages, its compiler’s internals aim for generality and reusability
in the design of its IR data structures and compilation passes, to allow for some
variability in the languages being processed. Its implementation builds on
technologies like chapter [3fs Illusyn for data abstraction, and our PGF [Bagge
and Hasu, [2013] code formatting pipeline and its pluggable token processors
for algorithm reuse.

6.8 More Dynamic Portable Programming in Magnolisp,

The ability to configure mglc’s core language enables us to create fundamen-
tally (rather than superficially) different languages, while still building on the
Magnolisp+ infrastructure. Haxe, Oxygene, and STELLA are all languages that
support transcompilation into multiple target languages, while still having a
richer and more “dynamic” algorithmic language than what is enabled by
Magnolisp-pase. Those three languages serve as inspiration for Magnolispy,
whose role in this chapter’s PLA is limited to compensating for any restric-
tions of Magnolisp proper, still from within the same language family and
environment, and without sacrificing code portability.

Magnolisp, (for “unrestricted”) is an example of an Magnolisp a1+ language,
one that retains Magnolisp,’s target agnosticity, but trades some reasoning abil-
ity for the ability to have more dynamically determined behavior. Magnolisp;,
resembles a contemporary object-oriented language, featuring objects with dy-
namic method dispatch, classes with subtyping, and only local type inference
[Pierce and Turner} 2000]; it also features first-class and anonymous functions.
A language of such contemporary nature can be compiled to human-readable
code for mainstream targets such as C++ and Java, and mglc supports those
targets (among others) for Magnolisp,,.

6.9 Integrating with Targets in Magnolisp, ; et al.

We can program component implementations portably in Magnolisp, or Mag-
nolispy, but their ability to express target language concepts and to interface
with target language APIs is limited. At the other end of the interfacing-ability
scale we can directly use the target platform’s languages, for full compatibility
with the platform. In between these choices, however, there may be room
for “bridge” languages designed to interface with both Magnolisp and a spe-
cific target language. This kind of a multi-language scenario is sketched in

figure

147

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

‘ d-java.rkt

#%module-begin

! d-cxx magnolisp-s2s c.rkt b.rkt a.rkt ! d-cxx magnolisp-alt !

X (API) V| P (API & impl.) (API & impl.) | | (impl.) X

d-csharp.rkt ‘ d-cxx.rkt

- - : -
I program | 1 d-cxx

L (C++IR) 1 (C++ IR) |

(C++
back end)

c.cs c.java c.cpp . : :
(impl.) (impl.) (impl.) main.cpp | ! program.cpp |

i 1
| program.exe !
1 [

Figure 6.6: Assembling and compiling an executable program from a se-
lection of components in multiple languages. Components “a” and “b” are
implemented in Magnolisp. Component “c” has multiple target language im-
plementations (in C#, Java, and C++), with its API declared in the "c.rkt"
Magnolisp module. Component “d” has implementations in Magnolispcg,
Magnolispjsy,, and Magnolispc, 4. The Magnolispc,; #language emits two
submodules for "d-cxx.rkt", one for its Magnolisp interface, and the other
for its Magnolispc,+ implementation. Solid boxes represent source entities,
and dashed boxes represent generated ones.

148

6.9. Integrating with Targets in Magnolispc. , et al.

Bridge languages by their nature cannot (at least not fully) abstract over
their target languages, but as I argued in section [1.4.5} that loses little in porta-
bility in cases where one anyway programs natively against target APIs. Fur-
thermore, being able to have syntactic abstractions specifically for Magnolisp-
to-target bridging should facilitate target system service access, which is an
important practical concern in creating useful programs.

This section’s bridge languages shall also be Magnolisps, at least in the
sense of stylistic uniformity and sharing of the Magnolisp+ infrastructure. For
most compatibility with target concepts, we could formulate our transcom-
piled language in terms of the target language abstract syntax, which is a
strategy proven by the likes of C-Mera [Selgrad et al. 2014] and SC [Hiraishi
et al.,2007]. The only major constraint for a Magnolisp’s target-language like-
ness is that it should still have Racket’s module system and adhere to Racket’s
scoping rules (and hygiene); that is to preserve robust composition of syntactic
forms, and for compatibility with Racket’s tools.

Magnolispc.+, Magnolispg;, and Magnolispsmpian are less extreme in
their target orientation than C-Mera and SC, in that they are strike a balance
between being a Magnolisp and an S-expression-based C++ reformulation.

6.9.1 Magnolispcy.+

Magnolispc, . is featured in figures and as a language intended for
implementing components that rely on C++ APIs. As a solely C++ targeting
language, Magnolispc, ; is mostly free to expose C++ features and to exploit
them in its transcompilation output. That said, Magnolispc..; does not aim to
be rich enough in C++ constructs for creating idiomatic C++ APlIs, but rather to
allow directly using existing C++ APIs without additional, externally-written
glue code.

For more intimate C++ interfacing, Magnolispc..; includes a curated selec-
tion of C++ constructs, and augments Magnolisp,’s C++ FFI with additional
features. A particularly flexible FFI feature is an “escape hatch” allowing any
function marked as #:verbatim to contain C++ source text as its body, to be
output verbatim during transcompilation. The same kind of an FFI mecha-
nism is supported for example by the Ferrelﬂ transcompiler, which compiles a
restricted subset of Clojure to C++.

Magnolispc, 4 builds on Magnolisp- as its infrastructure: it is implemented
by the magnolisp/cxx module, and it targets Magnolisp:cxx as its core lan-
guage. The dedicated core language allows Magnolispc, . to support C++-
oriented features, which include:

o Looping expressions such as while, continue, and break.
o First-class functions, represented in terms of functor values. These are

also supported by the C++ FFI, so that C++ functions can accept and
return function values.

e Anonymous functions translating to C++ lambda expressions. (Magno-
lisp also supports lambdas, but their closures cannot escape.)

o C++ level subtyping. Thatis, a structure type defined in Magnolispc +
may be annotated as having one or more C++ superclasses, although

(’http ://dropbox.nakkaya.com/builds/ferret-manual.html (2016)

149

http://dropbox.nakkaya.com/builds/ferret-manual.html

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

Magnolispc,+’s type system itself does not support subtyping. This
may allow calling of C++ functions requiring arguments that implement
a certain C++ interface; in C++, an abstract interface may be defined as
a class with only unimplemented virtual methods.

o Instance methods. Syntactically, methods are defined as functions, but
with a #:method attribute, causing the first argument’s type to name the
owning class. As in STELLA, function and method calls have uniform
syntax [Chalupsky and MacGregor} [1999].

For example, in Magnolispc.. ;. we can use a higher-order box-map function
in implementing a first-order function box-add2 for Magnolisp:

#lang magnolisp/cxx
(provide box-add2) ; provide tomagnolisp

(require ; for simulation
(only-in racket/base box-immutable unbox +))

(declare (+ x y) #:foreign ; ad-hoc polymorphic C++ function add
#:name add #:type (V E (> E E E)))

(typedef Box-t #:foreign) ; C++ type constructor Box_t

(define (box-map b f) #:foreign ; C++ function box_map
#:type (VW E (-> (<> Box-t E) (-> E E) (<> Box-t E)))
(box-immutable (£ (unbox b))))

; Increments boxed value by two.

(define (box-add2 b) #:magnolisp ; supply declaration to mglc
#:type (V¥ E (-> (<> Box-t E) (<> Box-t E)))
(box-map b (lambda (x) (+ x 2))))

whose box-add2 function mglc would translate into C++ as

template <typename E>
Box_t<E> box_add2 (Box_t<E> const& b) {

return box_map(b, [] (E const& x) { return add(x, 2); });
}

The box-add2 function demonstrates how Magnolispc, + can mediate between
Magnolisp and C++ APIs. Magnolisp would be unable to directly access
box_map, which has a Magnolisppase-incompatible (higher-order function)

type.

6.9.2 Magnolispg;

Magnolispgy is derived from Magnolispc, 4+, and provides additional syntax for
the domain of Qt programming, similarly to the way that moc recognizes ad-
ditional syntax for defining QObject-derived classes with signals and slots,
for example. Magnolispg; automatically adds any additional C++ definitions
that would normally be generated by moc, which simplifies the build process.

150

6.9. Integrating with Targets in Magnolispc. , et al.

The following example function makes use of Qt’s event communication
mechanism by connecting a QCompass object’s readingChanged() signal to
an event-receiving “slot” of our own definition. Qt version 5 would allow a
signal to be connected to a C++ lambda expression (or some other functor
object), but a number of niche devices have shipped with Qt 4, for which only
QObject-derived classes can implement slots. Magnolisp; works around that
limitation by having a slot-A construct, which compiles to an instantiation of
a QObject-subclassing functor, for which moc-compatible definitions are also
generated; consequently, there is no need to declare the “anonymous” functor
in a header file (that is known to moc):

(define (create-compass widget)
(define compass (make-QCompass))
(QObject::connect compass (SIGNAL (readingChanged))
#:qobject (slot-A () #:parent compass
(update-azimuth widget
(*-> compass (reading) (azimuth)))))
(*-> compass (start))
compass)

whose approximate C++ translation would be

MGL_FUNC QCompass* create_compass(Widget* const& widget) {
QCompass* compass = new QCompass();
QObject: :connect (compass, SIGNAL(readingChanged()),
new QSlotLambda_O0(compass, widget),
SLOT(call()));
compass->start();
return compass;

}

for which a QSlotLambda_0 functor type is additionally generated, one that
implements the call() slot containing a translation of the slot-A body.

As Qt APIs commonly deal with pointers to Q0bject-subtypes, Magno-
lispgy; is also equipped with pointer-aware operations, such as the *-> deref-
erencing call form shown above.

The compass example also demonstrates Qt’s parenting idiom, which is
commonly employed in Qt memory management (in addition to smart point-
ers). In that idiom the ownership of an object is passed onto another object,
even when there is otherwise no containment relationship between the two; it
is enough for the lifetimes of the objects to be the same. QObject-derived ob-
jects commonly accept an optional extra argument for the purpose of passing a
pointer to an object whose ownership is to be taken; alternatively the Q0bject
method setParent may be used. The idiom is employed in create-compass
by marking the compass object as the #:parent of the anonymous callback
object, so that both objects get deleted together.

6.9.3 Magnolispsymbiun

Magnolispsympian is another flavor of Magnolisp that is derived from Magno-
lispcy+, mostly just by having it export declarations for common Symbian
data types, and additional syntax to abstract over common Symbian idioms.

151

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

One Symbian idiom is to classify certain kinds of C++ classes as R classes,
whose instances are generally kept as automatic variables on the stack, but
which also require some resource allocation to be fully usable. For this pur-
pose, the Magnolispsymbian language includes a define+Connect/leaving
macro, which both defines a variable x of type T, and tries to do the re-
source allocation by invoking a Connect instance method, possibly with some
arguments. The macro inserts code for leaving (i.e., “throwing” a Symbian
exception) for reporting any failure in getting the resource:

(define-syntax-rule

(define+Connect/leaving x T Connect arg ...)
(begin

(define x #:type T)

(User: :LeavelfError (Connect x arg ...))))

An example code module written in Magnolispsyupign is shown below. The
module defines and exports a set-alarm function for Magnolisp, presumably
to be used as part of a Symbian implementation of a concept for accessing
system alarm services. The function uses define+Connect/leaving to define
and initialize a client session handle to the Symbian alarm server:

#lang magnolisp/symbian
(require "symbian-ascli.rkt") ; RASCliSession, TASShdAlarm, etc.
(provide set-alarm) ; Symbian implementation of set-alarm

; Sets an alarm due at time, with message msg.

; Returns the ID of the set alarm, or leaves.

(define (set-alarm tim msg) #:magnolisp
#:type (-> TTime TAlarmMessage TAlarmId)
#:permission (WriteUserData)
#:alert ([alarm@! #:on-leave]) ; forany error code
(define+Connect/leaving ¢ RASCliSession

RASCliSession: :Connect)

(CleanupClosePushL c) ; pushfreeinginstructionontoc]eanupstack
(define alm #:mut #:type TASShdAlarm) ; alarm details
(set-my-alarm-Category! alm) ; product family specific category
(TASShdAlarm: :Message= alm msg) ; message string
(TASShdAlarm: :NextDueTime= alm tim) ; absolute due time
(User::LeavelfError (AlarmAdd c alm)) ; schedule the alarm
(CleanupStack: :PopAndDestroy) ; freec
(TASShdAlarm: :Id alm)) ; return alarm ID

Symbian APIs also idiomatically define C classes, which (possibly indi-
rectly) derive from the class CBase, and whose instances are allocated from the
heap, typically using an overloaded new operator that leaves on failure. An
idiom related to C classes is two-phase construction, which involves invoking
both a C++ constructor and an instance method named ConstructL to fully
construct an object, and to do it safely so that a half-initialized object does
not end up as leaked memory. It is also idiomatic to abstract over two-phase
construction by implementing a public static method called NewL:

152

6.10. Macro-Based Mapped Types

CMyClass* CMyClass::NewL(MyArgl const& a, MyArg2 const& b) {
CMyClass* object = new (ELeave) CMyClass(a, b);
CleanupStack: :PushL(object);
object->ConstructL();

CleanupStack: :Pop();
return object;

}

If Magnolispgympian had the core language for defining constructors and static
methods, it might include a define-NewL macro for implementing both a C++
constructor and a NewL method with matching argument lists. However, as
Magnolispsypian merely aims to support using (not implementing) idiomatic
Symbian C++ APIs, the language merely includes two-phase-make/leaving
expression syntax for performing two-phase construction at the API call site,
thus letting it get away with less core language:

(define-syntax-rule
(two-phase-make/leaving make-T/leaving ConstructL arg ...)
(let ([object (make-T/leaving arg ...)])
(CleanupStack: :PushL object)
(*-> ConstructL object)
(CleanupStack: :Pop object)
object))

Any identifier passed in as the make-T/leaving macro argument can simply be
bound to a declaration of a #: foreign “function,” whose name translates into
C++asnew (ELeave) T, where T names the instantiated type. Thus, Magno-
hSPSymbiun/s C++ FFI does not necessarily need to support C++ operators or
their overloading.

While the above syntax definitions were basic enough to be implementable
without any Symbian-specific core language constructs, the processing re-
quired by Magnolispgypian is nonetheless not entirely free of Symbian specifics.
In particular, when analyzing its core language, it is necessary for mglc to ac-
count for the possibility of non-local returns occurring due to leaves.

6.10 Macro-Based Mapped Types

Our Magnolisp flavors are similar enough that they may be able to accom-
modate common macro-implemented facilities. The component system is one
such facility that might find use beyond Magnolisp, for managing code, while
mapped types is another macro-implementable and reusable mechanism of
the kind that is often useful in a cross-platform setting.

Mapped types, as found in the commercial RemObjects Elements language
environment, facilitate the generation of source code optimized for readability
by someone familiar with the target language; specifically, a mapped type may
be used to map a source language type name and uses of its operations into
the appropriate target language identifiers and expressions, so that a source
language APl is effectively implemented as a mapping rather than as a library.

Where desirable, we can define such mappings for a Magnolispjang in
terms of basic pattern macros, or perhaps in terms of a define-mapped-type

153

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

convenience macro, which takes either identifier-to-identifier or expression-to-
expression transformation rules. Suppose, for instance, that we have declared
two string APIs: the C++ standard std: :wstring, and the Qt-specificQString.
We might then define a mapped String type, which uses the more fitting choice
for our target:

(static-cond
[qt?

(define-mapped-type String #:mapped-to QString
[make-string #:mapped-to make-QString]

[string-index #:mapped-to QString-indexOQf]
[string-prefix? #:mapped-to QString-startsWith])]
[cxx?

(define-mapped-type String #:mapped-to std::wstring
[make-string #:mapped-to make-std::wstring]
[string-index #:mapped-to std::wstring-find]
[(string-prefix? s pfx) ; no direct equivalent operation
#:mapped-to
; instead expand to s.compare(0®, pfx.size(), pfx) == 0
(let ((x pfx))

(= (std::wstring-compare s 0 (std::wstring-size x) x)

MDD

With such definitions, and any referenced #: foreign declarations, the code

(define (f s x y)
#:type (-> String String String String)
(if (and (>= (string-find s x) 0)
(string-starts-with? s y))
s "no"))

would translate for a non-Qt C++ target roughly as

std::wstring f(std::wstring const& s,
std::wstring const& x,
std::wstring const& y) {

return ((s.find(x) >= 0) ?
(s.compare(®, y.size(Q), y) == 0)
false) ?
s : std::wstring(L"no");

6.11 Resolving Build Dependencies

Already Magnolisp*? includes functionality for inferring build dependency
information based on used types and functions and their build annotations.
Magnolisp+ likewise supports such inference for Magnolisppase languages,
and augments that support by also collating any annotated #:permission
requirements, similarly to the solution described for Magnolia in chapter [
Upon request, mglc resolves the build dependencies for a program, and
outputs them as include files in the requested supported languages; this pro-
cess is illustrated in figure Even when programming against abstract

154

6.11. Resolving Build Dependencies

program_build.mk
main USE_C := true
t USE_F1 := true

U (o) (D) {9) USE_F2 := true

/ PERMISSIONS := PERM_G

c f g
#:build (use-c) #:build (use-fl use-£2) #:permission (perm-g)

Figure 6.7: A program’s main function that calls #: foreign functions with
build and permission requirements. The resolution results can be output by
mglc in the GNU Make language, among others.

interfaces (of concepts), specific implementations will be resolved at compile
time, allowing mglc to infer build (and permission) requirements.

Magnolisp’s #:build requirements are annotated per type and function,
which results in relatively fine granularity in deducing the requirements; if a
component implements multiple operations, and only some of those opera-
tions require a certain library, then a program may use the other operations of
the component without introducing a dependency to the library. The unused
definitions are removed during whole-program optimization, and only the
remaining ones contribute to the inferred dependency information.

As suggested in section #:build requirements may be annotated in
terms of abstract names, each indicating a dependency; this makes it less work
to repeat an annotation for multiple definitions of the same API, and it also
makes it possible to specify different actual build instructions for each target.
As an example, we might specify a use-sqlite dependency for a type, and as
a consequence, using any function involving values of that type will introduce
the dependency for a program:

(typedef Sqlite ; SQLite database connection handle
#:foreign #:name sqlite3 #:build (use-sqlite))

The required #:permissions for a function may be specified as a list (ex-
pressing a set), or as an expression which may use #:and and #:or as logical
connectives. The Magnolisp compiler collates the individual specifications
into a total set of permissions to request for a program, except that it is up to
build scripts to compute desired permission requests when #: or expressions
are involved. The exact same implementation of a function might run on dif-
ferent targets and require different permissions; this can be handled though
conditional compilation, for example with our static-cond construct:

(define (start-bluetooth-discovery bt)
#:foreign #:type (-> BluetoothAdapter Bool)
#:alert ([bluetooth@! #:post-unless value]))

(static-cond
[(<= api-level 8) ; Android 2.2 (API level 8)

(declare start-bluetooth-discovery

155

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

#:permission (BLUETOOTH))]
[else ; Android 2.3 (API level 9)
(declare start-bluetooth-discovery
#:permission (BLUETOOTH BLUETOOTH_ADMIN))])

If permission requests cannot be assumed granted, then run-time errors due to
lack of permissions are possible. Declaring alerts for error reporting is orthog-
onal to declaring permissions. In the case of start-bluetooth-discovery,
the primitive is assumed to report any error as a #£f value, which translates as
a 'bluetooth@! alert. Using the @! suffix in naming alerts is a Magnolisp¥!
convention.

6.12 Capturing Build Domain Knowledge

After mglc has resolved a set of build dependencies, any symbolic ones (such
as use-sqlite) must be translated to concrete ones (e.g., source files and flags
for compilation, library names for linking, etc.) for building. In this chapter’s
architecture, that translation is left for a product-line-specific makefile to de-
termine, probably depending on current configuration parameters for their
information about the target platform and build toolchain.

The widely used GNU Mak build manager, for instance, has sufficient
capabilities for driving the build process, and for capturing platform-specific
build knowledge. Additionally, if some of the necessary knowledge is already
captured by existing domain-specific tools, one may want to have the prod-
uct line’s top-level makefile invoke those tools, in order to either extract the
relevant available information, or to run some of the build under an external
tool.

For building a Magnolisp program for a target, one would add a Make rule
for invoking mglc on the source program, so that it generates both a target
language program and build dependency information. A nested make invoca-
tion can then include the dependency information, and proceed to build the
dependencies, and then build and link the program binary. Any further pack-
aging of the program can then be done, perhaps with vendor-provided tools,
and this process may also require some of the dependency information, such
as any requirements for requesting permissions (or hardware capabilities).

One aspect of dealing with concrete build dependencies is making sure to
import the necessary APIs for the generated target language source files. In
Magnolisp, the way this is done varies depending on the target; some targets
require additional #:import annotations for Magnolisp primitives, to allow
any resolved imports to already be emitted by mglc during transcompilation
(e.g., using import in Java).

For C++ targets, the programmer may freely decide how to #include files
or to forward declare names for a particular symbolic build dependency, and
this can be done differently for interfaces and implementations, as there is a
MGL_IMPLEMENTATION macro only #defined for the latter. For example, if com-
piling "engine.rkt" for a C++ target, mglc would generate a "engine.hpp"
file that #includes "engine_config.hpp"; in that file, then, we can include
any necessary header for use-sqlite by writing

7https ://www.gnu.org/software/make/

156

https://www.gnu.org/software/make/

6.12. Capturing Build Domain Knowledge

#include "engine_build.h" // import dependency information

#ifdef USE_SQLITE
#include <sqlite3.h>
#endif

Another aspect of abstract-to-concrete build dependency translation is to
decide how to build a dependency and link it into the program. We might
have to specify conditional addition of #include paths for our program, or
conditional building and linking of targets such as object files or static or
dynamic libraries. For example, we might satisfy the use-sqlite dependency
in terms of an existing dynamic library; in a GNU Make file we might specify
the appropriate linker option as

LDFLAGS += $(and $(USE_SQLITE), -lsqlite3)
In a gmake file, in turn, we might specify that option as

USE_SQLITE {
LIBS += -1sqglite3
}

Where using a subordinate build manager lacking conditional compilation,
we can use a separate preprocessor to enable conditionality. For example, we
might use a Ruby-based template engine to allow for conditions in a Symbian
MMP file:

<% if $USE_SQLITE %>
library sqlite3.lib
<% end %>

The popular pkg-confi tool can be useful for querying information about
locally installed libraries on some systems; its data is maintained in a modular
form, as one metadata file (named "name.pc") per package. For example, to
query the appropriate compile and link options for the GNOME object system
API, we might write (in GNU Make)

ifeq ($(USE_GOBJIECT),true)
CFLAGS += “pkg-config --cflags gobject-2.0°
LDFLAGS += “pkg-config --libs gobject-2.0"
endif

For maintaining specific build information we end up using multiple dif-
ferent languages and tools. It might not be that useful to try to consolidate
on a uniform representation for that information, since it—by its nature—is
target specific, as is the availability of any tools used to extract or use the nec-
essary information. The drawback of dealing with bespoke build description
languages is that Magnolisp editing environments such as DrRacket cannot
out of the box offer any language-aware editing support.

8http://pkg—config.freedesktop.org/

157

http://pkg-config.freedesktop.org/

6. MouLDABLE-LANGUAGE-BASED Ni1cHE-PLATFORM PrODUCT LINES

File Edit Options Buffers Tools YASnippet Hide/Show Quack Help

flactine (£2 x) #:: (¢ nt)]) E
(define (g) x) Run >
(define (h) (g)) Tests 5 s
(h)) Eval)
(define (£3 x) #:: (J
. . Switch to REPL CcCz
sinating ‘
(define £2
(annotate
(export (type (-> int int)))
(#3plain-lambda (x) (define (g) x) (define (h) (g)) (h))))
test-closure-1.rkt> I

Figure 6.8: Macroexpanding a define form in Magnolisp, using Emacs with
racket-mode.

6.13 A Product-Line Development Environment

Basing our product-line programming language infrastructure on Magnolisp+
helps consolidate most programming into a single language environment,
which can largely be assembled out of existing Racket tooling.

As Magnolisp+-based languages are also Racket-based languages, existing
Racket tools and editors can support them as such; any language-specific sup-
port naturally requires customization. Scribble [Flatt et al.,[2009], for example,
is readily usable as a tool for documenting Magnolispiang APIs, although it
could benefit from additional syntax for documenting Magnolisp concepts and
implementations; that syntax can be defined as macros. The code navigation
and refactoring support found in the DrRacket IDE [Findler et al., [2002] and
Emacs’ racket-mode is directly usable with Magnolisp and its variants.

For example, racket-mode has a command for incrementally expanding
macro uses, as shown in figure[6.8} and that functionality works for Magnolisp
code just as it does for Racket code, since the macro system is the same.
Similarly, racket-mode’s require refactoring can also transform Magnolisp
code, since Magnolisp’s module system is the same as Racket’s.

Section [6.4fs component system might benefit from hover documentation
displayed by an editor, just as it is useful for Magnolia’s Eclipse plugin [Bagge,
2013] to display Magnolia component details. Magnolisp’s macro-based com-
ponent implementation means that information about components disappears
during expansion, unless it is specifically preserved. In the same manner as
Magnolisp languages’ macros record information for purposes of transcom-
pilation, information about components could be stored into a submodule, so
that it can loaded on demand by an IDE, and rendered for display to the user.

158

CHAPTER

Discussion

This dissertation builds on a line of work on the design, implementation, and
use of mouldable programming languages. That work so far has experimented
largely with Magnolia and C++ as languages that either manifest or can accom-
modate language in support of the mouldable programming methodology.
This work has complemented those two languages with Magnolisp, which
brings the flexibility and adaptability aspects of mouldability into its specific
focus, also with respect to its own implementation. The genericity [Bagge and
Haveraaen| [2010| [2014] and robustness [Bagge and Haveraaen) 2009; Bagge
et al.|,2006|[2009] aspects of mouldability have received more attention in prior
work.

My niche platform software product-line strategy revolves around a mould-
able programming language as a key production tool. I have no proper evalua-
tion of the strategy to offer, but in this chapter I discuss its known uncertainties
and perceived benefits and shortcomings. I complement the discussion by re-
viewing a selection of related work, from which the interested reader may
seek ideas for technological and methodological improvements to the solu-
tions presented in this dissertation.

7.1 Benefits, Shortcomings, and Uncertainties

“Unfortunately, no one can be told what the Racket is.
You have to see it for yourself.”

Andrew M. Kent, paraphrasing Morpheus in THE MaTRIX

Magnolisp’s bottom-up implementation in terms of Racket’s language defini-
tion facilities makes it not only a language, or a family of related languages, but
also infrastructure for implementing more members of that family. Magno-
lisp follows in the Lisp tradition of pragmatic, lightweight, reusable language
solutions, while still attempting to be uncompromising when it comes to prop-
erties that might help in scaling to large or complex product lines: it shuns
product-line-encompassing “projects” to allow focusing on one program fam-
ily member at a time; it supports separate source-to-IR compilation of core

159

7. DiscussioN

assets, which might be many; and it features lexically scoped macros for safer
use of multiple syntactic abstractions simultaneously.

Chapterl6|sketched a design for a family of Magnolisp-based programming
languages, and their use as part of a product line, together with auxiliary tools
(such as configuration and build managers). The level of detail in that design,
and the fact that some of its building blocks have already been created, inspire
some confidence in my PLA strategy’s suitability for addressing various cross-
niche-platform product management needs.

Magnolisp-

Magnolispcs+ Magnolispera

Tizen 2.0-2.2
BlackBerry 10 \

l Magnolis
Sailfish

=4

It should also be possible to discover suitable language designs for chap-
ter[6fs language family, as we can learn from existing languages of a compara-
ble nature: the restricted and target-agnostic Magnolisp, language is similar
to Magnolia; the richer and still target-agnostic Magnolisp,, is not unlike the
multi-targetable STELLA language; and the target-specific Magnolispc, + and
Magnolispg; languages are similar in nature to C-Mera, for example.

There is some uncertainty regarding the extent to which we can adopt
existing solutions in implementing Magnolisps. First, the source languages
feature hygienic macros (unlike, e.g., Magnolia, STELLA, or C-Mera), and this
may necessitate or encourage different design and implementation choices.
Second, the niche-platform PLE context calls for extensive FFI facilities, since
the platform landscape is heterogeneous, with multiple target languages, each
of which we may want to target natively. Furthermore, our component system
calls for code parameterization support, and the FFI should not be inconve-
nient in the target language either; I expect design challenges in this area, at
least for some target languages.

Given the heterogeneous platform setting, I consider it important to en-
able syntactic abstraction over various platform conventions. In section[6.9.2}
I sketched some syntax for more convenient and portable use of Qt’s slots
and signals mechanism, for example, and I previously proposed [Hasu, [2012]
similarly motivated language-based abstraction over specific error handling
mechanisms; both of these example use cases are likely to require highly target-
specific core language. Having a range of languages ranging from platform
agnostic to specific, as described in chapter|6} should arrange for compartmen-
talized access to various target language mechanisms. That approach should
hopefully allow for the definition of a variety of syntax for capturing platform
idioms, while still helping to contain the richness of individual core languages.

various
targets
(agnostic)

Magnolispsymvian Magnolispy

GNU Make

160

7.1. Benefits, Shortcomings, and Uncertainties

7.1.1 “Multi-Core” Transcompiler Engineering

I'have not presented a systematic approach for maintaining transcompilation
routines for multiple different core languages within a single compilation en-
vironment. Solutions for modular and composable compilation do exist (e.g.,
Silver), but it is not certain that they would enable much reuse in this case,
compared to less advanced implementation techniques. Chapter|[6[s PLA calls
for either highly similar or significantly different languages: the similar ones
(e.g., Magnolispc,; vs. Magnolispp;) might even share the same core lan-
guage, or at least the same compilation pipeline (in a different mode); whereas
the different ones (e.g., Magnolisp, vs. Magnolisp,) involve different analysis
and optimization possibilities, and might have very limited commonalities in
their sequences of compilation steps, except perhaps towards the back end for
common target languages.

Our core languages would ideally be of manageable size, so that even main-
taining their compilation routines entirely separately would be feasible. Even
if so, we would probably want to enable at least ad-hoc code reuse between
core language processors; this might for instance be done by organizing our
compilation code into small routines of limited concerns that are more likely to
be reusable in different contexts, or organizing it into generic or configurable
routines capable of adapting to different contexts.

Concrete examples of potential code-organization tactics to employ have
also been presented in this dissertation’s chapter [3|and in our paper on code
formatting [Bagge and Hasu,2013], although without reports of their extensive
practical application, which means that those tactics remain mostly unproven
for now.

Chapter 3| discussed achieving ad-hoc genericity by declaratively imple-
menting special casing for multiple AST node types, in an open-ended way.
There is little doubt that this results in more abstraction and less special casing
in the mglc codebase, thus making routines both shorter and more general.
However, the codebase presently fails to make extensive use of the more un-
orthodox capabilities of the Illusyn library, to allow for better assessment of
the usefulness of those capabilities; one reason for this is that I (as a compiler
engineer) am not used to having those capabilities available, and have yet to
develop practices for exploiting them.

In our code formatting paper [Bagge and Hasu, [2013] we discussed achiev-
ing concern separation by organizing code as pipelines of token processors.
The Magnolisp compiler’s internal use of token streams in code formatting
is presently limited to an adaptation of the algorithm described by [Kiselyov
et al.| [2012], which tackles the notorious pretty-printing problem through in-
cremental stream processing.

The current version of mglc has few back ends, and little pressing need
for code reuse in code formatting. My PLA strategy calls for multiple back
ends, however, and the pipelines-of-token-processors approach might be par-
ticularly attractive if one wished to quickly implement basic code formatting
for multiple similarly styled languages; one might achieve that simply by hav-
ing different back ends emit correctly categorized tokens, and feeding them
into a common, suitably configured pipeline. One fortunate state of affairs
is that at least with respect to code formatting, the current mobile platforms
constitute a relatively uniform target, as almost all of their vendor-supported

161

7. DiscussioN

programming languages have a C-style concrete syntax, with similarities in
their spacing and line breaking rules.

7.2 Related Work

The Lisp tradition of pragmatism that has inspired Magnolisp is clearly mani-
fested in the small implementation of C-Mera [Selgrad et al., 2014] (previously
known as CGen) and the powerful applications it nonetheless allows [Lier etal.,
2016}Selgrad et al.,[2016]. C-Mera is a Common Lisp embedded transcompiled
language. It is essentially just C with S-expression syntax (and support for self
extension with Common Lisp macros), which means that no sophisticated
analyses are required for compiling it to C. That characteristic also makes it
straightforward to add AST node types to support additional languages whose
syntax is similar to that of C, with C-Mera already featuring modules for C++,
CUDA, GLSL, and OpenCL. The success of C-Mera’s implementation strategy
suggests that a single, straightforward compilation pipeline might be adequate
for supporting multiple related target-language-specialized languages such as
Magnolispc,, and Magnolispg; of chapter@

LambdaNative [Petersen et al.,|2013] is a cross-platform application frame-
work implemented in Scheme. It is able to target multiple mobile OSes, and
has been used to develop a number of applications for the mHealth domain
in particular. LambdaNative relies on Gambit-C for transcompiling Scheme
programs to C for further compilation with a target-compatible C compiler.
The portability of the C code depends on the availability of standard UNIX
and POSIX APIs, and the APIs of the framework’s own portable libraries such
as a GUI widget library targeting OpenGL (ES). In contrast, my product-line
strategy is aimed at targeting native languages and frameworks, for maxi-
mum compatibility, but with various forms of abstraction to help manage
target-specific details.

RemObjects Elements (version 8.3), as already discussed in section[I.4.5] has
a cross-platform strategy similar to mine, as it has specific support for target-
ing platforms “natively;” it does not support C or C++ as targets, however,
meaning that it is not especially suitable for natively targeting niche smart-
phone platforms such as BB10, Sailfish, and Tizen. All of the Elements-based
languages share the same language environment (either Visual Studio or the
dedicated Fire IDE), which is like my strategy of designing Magnolisp variants
for compatibility with Racket tooling; however, my strategy is to have a lan-
guage family with domain-oriented variation, while the Elements languages’
differences are mostly stylistic. Elements’ source (and target) languages are all
object oriented, with their facilities for API-level abstraction and code compo-
sition being of a different nature than those of Magnolia, which are based on
ADTs and components. Elements languages lack macros, but they may use
“aspects,” which are a form of compiler extension; an aspect’s implementa-
tion is loaded at compile time to influence the generation of code for class or
member definitions annotated with that aspect.

PureScrip is a Haskell-resembling programming language that compiles
to JavaScript. The language is designed for fairly direct, human-readable

Thttp://www.purescript.org/ (2016)

162

http://www.purescript.org/

7.2. Related Work

translation, and the design appears quite target-language agnostic, as sug-
gested by various efforts to create alternative back ends for it. PureScript
appears to have a convenient JavaScript FFI, as suggested by the large number
of available bindings to JavaScript libraries. PureScript facilitates static reason-
ing in terms of its advanced static type system. Magnolisp likewise aims for
readability of generated code, target-language agnosticity, having lightweight
FFI mechanisms, and ease of static reasoning, although its support for static
reasoning is not based on type system sophistication.

nesC [Gay et al} 2003] is an example of a domain-oriented language; it
is for the domain of networked embedded systems, and has been used to
implement the TinyOS operating system for sensor networks. Like Magnolia,
nesC supports component-oriented application design. It is also similar to
Magnolia in that its programming model is suitably restricted to enable a
larger class of accurate static analyses; the nesC compiler is capable of detecting
most data races at compile time, for example, and performs whole-program
inlining and dead-code elimination, before transcompiling to C. Despite its
restrictions, nesC is expressive enough for writing real-world applications
in its resource-constrained domain; my strategy is to allow the programmer
to make a tradeoff between accurate static analysis and expressive power,
through a choice of languages of different characteristics.

Silver [Wyk et al} [2010] is an attribute grammar specification language,
which may be used to specify languages in a modular manner. As attribute
grammar rules may also derive a translation to a target language, Silver is
capable of transcompilation, and has been used to implement an extensible-
C-to-C compiler, for example [Williams et al 2014]. An advantage of Silver
over Racket is that it supports the definition of new (core) language constructs,
including their semantics, with any associated static analyses or optimizations;
this makes it candidate infrastructure for maintaining a family of cores for
related languages. Silver also supports “forwarding” [Van Wyk et al., [2002],
which allows language constructs’ semantics to be defined by translation to
other constructs, similarly to macros; even where forwarding is present, some
semantics may still be specified explicitly as attributes, which might be a useful
possibility for extensions to reasoning-focused languages like Magnolia.

Magnolia In chapter [f] I envisioned a PLA with Magnolisp as its central
production tool; had I instead picked Magnolia for that role, that would have
called for solutions for managing multiple different variants of that language.

Bagge has previously presented the interesting idea of creating a domain-
specific language specifically for the purpose of maintaining variants of a par-
ticular language (family). Her MetaMagnolia [Bagge) [2010a] domain-specific
language (DSL) functions as a description language for specifying the concrete
syntax and static semantics for variants of Magnolia. MetaMagnolia cannot
be used to define new core syntax; the dynamic semantics of a MetaMagnolia-
defined language is determined by translation to existing “Magnolia Core”
language (or parts thereof). A MetaMagnolia-based language specification is
complete enough to allow corresponding language front-end implementation
code to be generated based on it, and the MetaMagnolia compiler does that
by generating code in the SDF and Stratego languages. MetaMagnolia has no
support for the definition of self-extensible Magnolias.

163

7. DiscussioN

Bagge| [2010b] has previously also proposed a language self-extension
scheme specifically for Magnolia. It supports both “operation patterns” and
“transforms,” which roughly correspond to pattern macros and programmable
macros in Racket, with the exception that Bagge’s transforms support multiple
extension points and traversal modes. Racket’s macro-expansion time corre-
sponds only to the desugaring extension point, with expansion defaulting to
outermost order; other traversal modes are possible due to programmabil-
ity, but bottom-up traversals are incompatible with macro hygiene. Bagge’s
scheme has no specific support for maintaining hygiene.

Sugar* Sugar*[Erdweg and Rieger, 2013] is a framework for turning non-ex-
tensible languages into extensible ones. The resulting languages are extensible
from within themselves, in a modular way, so that extensions are in scope
following their respective module imports. Sugar* extensions are not mere
macros (i.e., functions which translate the extended syntax away during pars-
ing), but rather they extend the base language grammar with new productions,
and define associated AST nodes and desugarings; in addition to syntax, an
extension may also introduce static analyses and editor services. Any safety
of extension composition relies on user-imposed discipline in defining them.
Sugar* languages’ editor services are available within Eclipse, and realized
through integration with the Spoofax [Kats and Visser, [2010] language work-
bench.

Sugar* meets most of the language engineering needs of my product-line
strategy, with some advantages (e.g., mechanisms for defining semantics for
new “core” language) and disadvantages (e.g., lack of extension composition
safety) compared to Racket. Due to its ability to extend existing languages,
Sugar* might also enable the use of extensible target-platform-native languages
within a product line; an extensible Java, for example, is already available in
the form of Sugar] [Erdweg et al [2011].

mbeddr mbeddr [Voelter etal.,2013a] is a feature-rich programming language
and IDE for the domain of embedded systems programming; its technology
stack builds on the JetBrains MPS language workbench. mbeddr’s program-
ming language is mbeddr C, which resembles C closely [Voelter et al., 2012]],
and transcompiles to C for deployment to embedded targets. Focusing solely
on C as a target language for programs gives good reach over the embedded
domain, as C has long been the dominant embedded programming language
[UBM Electronics| 2012].

The niche smartphone situation is different in that target platforms tend to
ship with a preinstalled, locked-down OS, with a de-facto-favored language.
My chosen strategy differs from mbeddr’s by using target-language-agnostic
source languages for composing systems and programming application logic,
so that each platform can be targeted via its native language. My strategy
also entails using multiple target-specific languages, rather than just one spe-
cialized for C. A commonality between the two approaches is the idea of
domain-specific language extension, although my approach also supports
self-extension, perhaps leading to more pervasive and context-sensitive syntax
extension.

164

7.2. Related Work

The mbeddr C language is not extensible from within itself, not even in
terms of the C preprocessor, which it does not include. However, mbeddr C is
extensible externally (in terms of JetBrains MPS) in a modular and principled
way, so that each extension can define its syntax (both notation and abstract
syntax), type checking, dynamic semantics, and IDE support. The IDE features
“projectional editing” with various alternative notational styles, including
text, prose, math tables and graphics [Voelter and Lisson, 2014]; such choice of
notations is unavailable to Magnolisp, but various alternative textual notations
can easily be defined in terms of macros, even for local use, and perhaps even
specializing for local names.

While reasoning about Magnolia is based on generic language restrictions
and declared API semantics, mbeddr authors advocate static analysis of DSL
code, as domain-specific constructs would tend to more restricted and richer
in high-level semantics than general-purpose expression language. mbeddr
features language for state machines, for example, and such language can be
complemented with additional language extensions related to describing ver-
ification conditions, to support generation of input for external C verification
tools [Molotnikov et al.,[2014]]. An extensible Magnolia’s static analysis capa-
bilities could be further improved using the same approach. Another potential
application of the general idea would be to give a language such as Magnolisp
more powerful core syntax, while enforcing restricted use patterns in terms
of domain-specific abstractions defined as macros (restricted, e.g., to maintain
analyzability or compiler or tool expectations).

mbeddr has been designed to function as a comprehensive product-line
engineering environment [Voelter and Visser| [2011], as suggested by its spe-
cific support for requirements and product line variability management, for
instance. mbeddr includes a DSL for describing requirements, and implemen-
tation artifacts may point to associated requirements to support “tracing,” for
example [Voelter et al., 2013b]]; including similar annotations in Magnolia or
Magnolisp would also be possible. mbeddr also includes language for ex-
pressing product configurations; unlike with Konffaa, sets of all possible valid
configurations are specified separately (as feature models) from individual
configuration instantiations [Tomassetti and Ratiu} [2013].

mbeddr’s approach to developing domain-specific software engineering
tools is “Generic Tools, Specific Languages” [Voelter} 2014], which is founded
on the idea of adapting languages for purposes of domain and tool integration,
rather than adapting engineering tools to the needs of a domain. My strategy
also subscribes to that general idea, but it does not specifically insist on a
language workbench as its technological basis, nor on an IDE that is aware of
the domain-specific languages and their semantics.

Haxe Hax is a prominent example of a general-purpose programming lan-
guage transcompiling to multiple targets. Haxe has back ends for C++, C#,
Java, Lua, Python, etc., and this extensive selection of targets makes it suitable
for targeting various niche smartphone platforms in their native languages,
which is also my strategy.

As support for implementing cross-target abstractions, Haxe features a
dedicated conditional compilation mechanism, in the form of the #if #el-

’http://haxe.org/|(2016)

165

http://haxe.org/

7. DiscussioN

seif ... #else ... #end construct, with access to compiler flags from associated
conditional expressions. Haxe also supports “abstract types,” which are simi-
lar to mapped types in that they are a compile-time feature for defining types
over concrete types (either directly or via other abstract types). Some Haxe
constructs can be annotated with “metadata,” and there is distinct annotation
syntax for run- and compile-time inspectable metadata; compile-time meta-
data can communicate information to the Haxe compiler, or to macros. Haxe
supports various kinds of macros as a self-extension facility, and has a rich
haxe.macro API for compile-time AST manipulation.

The Haxe language is similar in nature to chapter [6fs Magnolispy, as due
to its expressivity and portability, it may be used to write portable application
logic for multiple targets. Haxe’s standard library includes a selection of
cross-platform APIs for data structures and algorithms, which are available
for all targets. The library also has some cross-platform APIs for accessing
system services, available for a subset of Haxe’s targets. A third category
of APIs in the library is target-specific APIs, implemented only for a single
target, and typically concerning highly target-specific functionality (e.g., web
browser, Flash Player, or jQuery library integration for the JavaScript target).
Additional Haxe APIs such as OpenFL, NME, StablexUI, and HaxeUI are
available, and might be used for portable implementation of user interfaces
for smartphone targets, as long as it is not a requirement to use target-native
widgets.

166

CHAPTER

Conclusion

I am a proponent of choice, but choice can be expensive to enable; seldom
does an end user have much choice between operating systems on which to
run a specific software application, for instance. The work on this dissertation
has been motivated by the challenges of cross-platform software development
targeting niche platforms. I have tackled those challenges in the hopes of
making it less costly to provide choice.

Getting intimately familiar with vendor-specific application developer of-
ferings is a risky investment when it comes to a platform that could be an-
nounced discontinued at any time. Even worse, such offerings can differ
greatly between platforms, making for an inconsistent cross-platform devel-
opment experience, often with few obvious code reuse opportunities. Existing
cross-platform software development solutions, on the other hand, typically
only include support for more mainstream platforms.

My belief is that these challenges cannot be entirely overcome, but that
programming language technology can make targeting an additional platform
amore systematic, predictable, and contained experience, at least for those who
are prepared to engage in some language engineering. By “contained” I refer to
limiting the extent to which one must acquire and remember platform-specific
knowledge.

My assumption is that product-line-oriented interfaces and languages can
be used to abstract over vendor-supported interfaces and languages, mean-
ing that while the required target details must be looked up for purposes of
implementation, that information can be captured inside interface and lan-
guage implementations (of product-line-conventional naming and syntax), to
avoid the need to constantly recall it. The product-line-oriented languages can
have their own development environment, meaning that there is less need to
become intimately familiar with the nuances and quirks of multiple vendor-
provided environments. The source languages can be implemented in terms
of translation to target languages, thus allowing the use of vendor-provided
build tools, and avoiding the need to learn about target binary formats.

In this dissertation we have described a number of solutions that I imag-
ine could function as building blocks for pragmatic implementations of such
product-line-oriented languages and integrated tooling. Those solutions seek

167

8. CONCLUSION

to facilitate many aspects of the implementation of cross-platform-deployment
and product-line friendly languages, including surface syntax definition and
extension, program analysis and transformation, third-party language infras-
tructure reuse, and portable error handling.

The presented solutions do not constitute a comprehensive set of building
blocks for the product-line language vision, however. I did not cover concur-
rency, for example, which is a central concern for many kinds of reactive (or
user-responsive) applications. Neither did I cover parallelism, which is be-
coming an increasingly important concern for application developers, given
the nature of modern hardware architectures. For convenient development
of multi-tasking applications, we might wish for cross-platform-deployment-
friendly language support for concurrency and parallelism; both can be made
more manageable through language design, as suggested by the favorable
characteristics of languages such as Elm [Czaplicki and Chong), [2013]] and
ParaSailll

While I have made some educatedﬂ guesses regarding the usefulness of the
presented solutions in the niche platform setting, I cannot be certain that they
would actually come together to achieve the product language family vision
outlined in this dissertation, nor can I be sure that the complete solution would
be especially fit for purpose. Acquiring such certainty is hard to do without
actually creating a software product line of the envisioned kind, but product
creation is beyond the scope of mere PhD work; I shall leave that for future
work in a more industrial setting. For now, I trust that the presented technolo-
gies stand on their own merits, and may even happen to have applications far
outside the niche platform domain.

8.1 Contributions

I'have presented various technologies with applications to creating language-
based tools for niche platform software development. The main contributions
of this dissertation are:
e A technique for exploiting fairly Racket-specific macro features (sub-
form expansion and submodules in particular) to allow a macro system
to be reused as another language’s syntactic extension mechanism, in a
manner that retains the possibility of separate (per-module) compilation.
We showed that macros can take advantage of the module-compilation
time to prepare for further compilation to a third language.

e A scheme for lightweight, declarative, language-integrated AST API
generation, such that it is possible to generate not only concrete (data
storing) node types, but also abstract ones (abstracting over related con-
crete types) of a similar appearance, complete with interfaces and “rep-
resentations.”

¢ A language-based solution for API-access permission management, re-
lying on a static-reasoning-friendly programming language to allow for
complete permission requirement inference, and on a static component
system in order to support cross-platform codebases.

1http ://www.parasail-lang.org/
ZMy “education” in these matters comes from personal experience in developing software for
niche platforms such as GEOS, SIBO, Symbian OS, Maemo, and MeeGo Harmattan.

168

http://www.parasail-lang.org/

8.2. Niche Platform Strategy Summary

o A design for a general, platform-agnostic failure management conven-
tion that is static reasoning friendly, and programming language support
for syntactic convenience in following the convention and adapting to it.

8.2 Niche Platform Strategy Summary

This dissertation has presented various programming-language-focused tech-
nologies developed with cross-niche-platform application authoring and main-
tenance in mind. According to this dissertation’s software production strategy,
those technologies—as summarized in section [8.I}—have several application
areas within the niche-platform software development domain. In particu-
lar, they can be applied to constructing language-based tools that help treat
different platforms the same, or—where that is not feasible—help deal with
platform specifics.

Portability and Platform Abstraction: To avoid having to write application
logic separately for each niche platform, it should be written portably; for that,
abstraction is essential, and language is a tool for that:

e Language can abstract over target languages, through source-to-source
compilation.

o Language can abstract over the use of specific implementations, through
a distinction between interfaces and implementations, as can be made
by a component system.

e Language can abstract over idiomatic design patterns, by allowing syn-
tactic abstractions to be defined in the form of macros, which can then
emit syntax to implement specific patterns.

o Language can abstract over language implementation details, to make
their application logic more reusable; for example, there can be language
for defining intermediate language representations, whose data may be
exposed in an abstract and controlled fashion though multiple alternative
interfaces (and views).

Product Family Engineering: Software assets for a product family may be
encapsulated as components, and composition of whole products need not
entail run-time overhead if the component system allows it to be done statically,
at compile time. To allow assets to compose, they must be compatible at
the interface level, and it helps to have common conventions in particular
for universal concerns affecting most components; specific support for such
conventions can be included in a programming language, even for cross-
cutting concerns such error handling. Language constructs can also be turned
into modular assets, possible to organize into libraries, if they can be expressed
as syntactic (and preferably hygienic) macros; such constructs will work across
target languages if they get translated via a common core language.

Configuration Management: Inalanguage with a component system, prod-
uct configurations can in large part be expressed as programs composed out
of compatible software assets. Axioms declared for component interfaces can

169

8. CONCLUSION

help statically verify or dynamically test the validity of program composi-
tions. When component implementations are annotated with the relevant
attributes, and the composition language permits resolution of (potentially)
invoked operations statically, then it is possible for whole-program analysis to
infer configuration information such as the set of required permissions; that
information then need not be manually declared and separately maintained
for each product variant for purposes of building (or publishing).

8.3 Software API Summary

This dissertation has discussed various pieces of proof-of-concept software,
including Illusyn, Magnolisp, Erdag4, Erdac,, and Konffaa. The following
diagrams summarize those software pieces’ central application-specific APIs
and languages, by listing their “vocabulary” (i.e., exported symbols). I hope
that this gives some idea of the size, scope, and functionality of those interfaces.
In listing exported symbols, the diagrams show transformer and value
binding exports in a different style, with the former kind typically being
macros. Symbols that are intended primarily for use by macro implemen-
tations have the number “1” as a superscript. Arrows go from API clients to
API providers. APIs without labels are for implementers rather than users.
The mglc and konffaa tools expose a command-line interface rather than a
programming interface, and thus no exported symbols are listed for them.
Further documentation, source code, and installable software packages for
Ilusyn, Magnolisp, the Erda languages, and Konffaa are available from

https://bldl.ii.uib.no/software/pltnp/

170

https://bldl.ii.uib.no/software/pltnp/

8.3. Software API Summary

8.3.1 Illusyn

[llusyn API
<* <+ all all-rewriter all-visitor alltd and-rewrite ast-
get-fields bottomup bottomup-rewriter bottomup-visitor
break combined-rewrite-all combined-rewrite-one combined-
rewrite-some combined-visit-all conec-vspec! current-
strategic-data-accessors define—ast define-ast* define-
specific-data-strategy* define-view define-view* downup

downup2 extend-with-implied-views!

fail-rw gen:strategic
gen:syntactifiable generate-view-methods! id-rw innermost-—
rewriter list-all-rewriter list-all-visitor list-one-
rewriter list-rewrite—-all list-rewrite-one list-rewrite-
some list-some-rewriter list-visit-all make-strategic-data-
accessors make-strategy make-term-rewrite-all make-term-
rewrite-one make-term-rewrite-some make-term-visit-all
make-view—all make-view-one make-view-some make-view-term-
rewrite—all make-view-term—-rewrite—-one make-view-term-—
rewrite—-some make-view-term-visit-all oncetd one one-
rewriter onebu or-rewrite outermost-rewriter rec rec-lambda
repeat repeat-rewriter rewrite-repeat seq-break seq-visit-
break set-term-fields some some-rewriter somebu sometd
strategic-list-accessors strategic-term-accessors
strategic/c strategic? struct-copy/type-ctx syntactifiable-
mkstx syntactifiable/c syntactifiable? term-all-rewriter
term-all-visitor term-fields term-for-each term-map term-
one-rewriter term-qty' term-rewrite-all term-rewrite-
all/stateful term-rewrite-one term-rewrite-some term-some-
rewriter term-visit-all topdown topdown-break topdown-
rewriter topdown-visit-break topdown-visitor try view-term-—
fields—getter view-term—-fields-setter when-rw where where-

not with-strategic-data-accessors

171

8. CONCLUSION

8.3.2 Magnolisp

magnolisp Language Magnolisp IR API
#%app #%datum #%expression #%magnolisp #%module- Aot ”W"er ey e

Applymxpr - s
Bxpr-1 ApplySxpr- wor? Assigumer

begin #%plain-app #%plain-lambda #%top #%top-— e e et e
interaction -> <> Bool CORE Void all-defined-out - -
all-from—-out annotate auto begin begin-for-syntax
begin-racket begin0 build cast combine-in combine- e i
out declare define define-syntax define-syntax- ey -
rule define-syntaxes define-values except-in Toreiomiroeeets rom
except-out exists expected export for-all for- S
label for-meta for-syntax for-template foreign et
foreign-type function if if-cxx if-target lambda e
let let* let*-values let-annotate let-racket let- @a‘ s Letsia s

racket/require let-syntax let-syntaxes let-values oy ey i ey Tt e
letrec letrec-syntax letrec-syntaxes letrec- W ey oo
syntaxes+values letrec-values literal local- g

require only-in only-meta-in prefix-in prefix-out

primitives protect-out provide quasiquote quote
relative—-in rename-in rename-out require set!
set!-values struct-out type typedef unless unquote

values var void when A V 3
+ all of racket /base for syntax

make-module-begin! module-

begin parse-defs—from-

module

[mgLc CLI Tool] lusyn APl«——

Magnolisp Compiler API

compilation-state?

compile-files compile-
modules generate-files

get—-expected—-anno-value ,w

StT? CxxDefun CixDefun

defs-set-formats-to-Literals de

ila-file i1 t-r get-uriter-etc hashId? hexnum hi
1ld-annos/ir pp pp-mgl o

172

8.3. Software API Summary

8.3.3 El‘daC++

erda/cxx Language
#%app #%datum #%expression #%module-begin #%top #%top-
interaction -> —->Result <> AlertName Bool Maybe Result
Void all-defined-out all-from-out and annotate bare begin
begin0 block cast combine-in combine-out cond declare
define except-in except-out exists export for-all for-
label for-meta for-syntax for-template foreign foreign-
type if if-not let let* let-direct letrec literal local-
require not only-in only-meta-in or prefix-in prefix-out
protect-out provide quote relative-in rename-in rename-
out require struct-out type value V 3

Bad Bad-name Bad-v Bad? Good Good-v Good?
Just Just-v Just? MaybeObj MaybeObj?
Nothing Nothing? ResultObj ResultObj?
bad-condition begin-direct cond-post-
checks cond-pre-checks data-invariant?
define-my-syntax i2-module-begin let-
Good—-args struct:Bad struct:Good
struct:Just struct:MaybeObj
struct:Nothing struct:ResultObj wvalue

make-module-begin! \‘ magnolisp Language

(from Magnolisp)

erda/cxx Runtime API
mglc CLI Tool---->->Result AlertName Maybe Result not
+ declares for C++ translation

173

8. CONCLUSION

8.3.4 ErdaGA

erda/ga Language
#%app #%datum #%expression #%module-
begin #%top #%top-interaction :-:>
:/:> ::> >>= alert-name=? alert-
name? all-defined-out all-from-out
and apply args—-car args—-cdr args-
cons args—-list args-list-set args-
list? args—map args-replace-first
bad-result-alert—-name bad-result-
args bad-result-args-map bad-result-
fun bad-result? begin begin0O car cdr
combine-in combine-out cond cons
declare default-to-bad define
define-direct direct-lambda do
except-in except-out for-label for-
meta for-syntax for-template
function-with-arity? function? good-
result-of? good-result/e good-
result? if if-then lambda length let
let* let-direct let-direct+ letrec
list 1list? local-require not null
null? on-alert only-in only-meta-in
or pair? prefix-in prefix-out
protect-out provide quote raise
raise-with-cause raise-with-value
redo redo-app redo-apply relative-in
rename—-in rename-out require result-
has-value? result—-named? result-of?
result-value result/e result? set-
bad-result-args struct-out submod
thunk try unless value when A

Bad Bad-args Bad-
cause Bad-fun Bad-
name Bad-result
Bad-set-result
Bad? DI/c DI? Good
Good-v Good/c
Good? Result
Result-contains-
name? Result-has-
immediate-value?
Result-immediate-
value Result/c
Result? bad-
condition begin-
direct data-
invariant? define-
my—-syntax gen:DI
print-Bad-
concisely?
struct:Bad

struct :Good
struct:Result
value

174

8.3. Software API Summary

8.3.5 Konffaa

konffaa Language
$ assert attr-defined
attr-defined? attr-
undefined attr-—
undefined? class-all-
attrs define—attribute
define—-axiom define-
field define-variant
define-variant* define-
variant** hexnum hexnum-
num hexnum? iff run-
axiom-based-tests self
struct:hexnum sublist?
true? wvariant-class
+ all of racket

Field Field-func Field? VarCls
VarCls-bases VarCls-ctor
VarCls—-name VarCls? VarObj
VarObj-attrs VarObj-axioms
VarObj—-cache VarObj-cls
VarObj-name VarObj? assert
attr-defined attr-defined?
attr-undefined attr-undefined?
field-thunk get-all-attrs!
get—-all-axioms get-attr! has-
attr? hexnum hexnum-num
hexnum? iff make-VarObj run-
axiom-based-tests sort-hash-
by-key struct:Field
struct:VarCls struct:VarObj
struct:hexnum sublist? true?

A

konffaa CLI Tool|

Model Model-attrs Model-path Model? capture display-
attr/c display-attr/gmake display-attr/gqmake display-
attr/rkt display-attr/ruby display-generated-notice
display/c display/gmake display/ruby lang” make-write-—
include-file name-to-c name-to-gmake name-to-gmake/negate
name-to-ruby path-h-ifdefy space-join struct:Model write-
c-file write-changed-file write-gmake-file write—-gmake-—
file write-rkt-file write-ruby-file write-scheme-symlink

175

[1]

(2]

3]

[4]

[5]

[6]

[7]

8]

[9]

Bibliography

Michael D. Adams. Towards the essence of hygiene. In Proceedings of
the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), January 2015.

Eric Allen, Ryan Culpepper, Danus Dam Nielsen, Jon Rafkind, and
Sukyoung Ryu. Growing a syntax. In Proceedings of International
Workshop on Foundations of Object-Oriented Languages (FOOL’09), 2009.

Android Open Source Project. Android Developers. URL
https://developer.android.com/. Retrieved May 2013.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and
David Lie. Short paper: A look at smartphone permission models. In
Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM "11, pages 63-68, 2011.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout:
analyzing the Android permission specification. In Proceedings of the
19th ACM Conference on Computer and Communications Security, CCS "12,
pages 217-228, 2012.

Anya Helene Bagge. Constructs & Concepts: Language Design for
Flexibility and Reliability. PhD thesis, Research School in Information
and Communication Technology, Department of Informatics,
University of Bergen, Norway, 2009.

Anya Helene Bagge. Language description for frontend
implementation. In Claus Brabrand and Pierre-Etienne Moreau,
editors, Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications, LDTA "10, pages 9:1-9:8, New York, NY, USA,
November 2010a. ACM.

Anya Helene Bagge. Yet another language extension scheme. In Mark
van den Brand, Dragan Gasevi¢, and Jeff Gray, editors, SLE "09:
Proceedings of the Second International Conference on Software Language
Engineering, volume 5969 of LNCS, pages 123-132. Springer-Verlag,
March 2010b.

Anya Helene Bagge. Separating exceptional concerns. In Proceedings of

the 5th International Workshop on Exception Handling (WEH'12), pages
49-51. IEEE, June 2012.

177

https://developer.android.com/

BiBLiOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

178

Anya Helene Bagge. Facts, resources and the IDE/compiler mind-meld.
In Proceedings of the 4th International Workshop on Academic Software
Development Tools and Techniques (WASDeTT’13), July 2013. URL
http://wasdett.org/2013/submissions/wasdett2013_submission_
10.pdf.

Anya Helene Bagge and Tero Hasu. A pretty good formatting pipeline.
In Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors,
Proceedings of the 6th International Conference on Software Language
Engineering, volume 8225 of LNCS, pages 177-196. Springer-Verlag,
October 2013.

Anya Helene Bagge and Magne Haveraaen. Axiom-based
transformations: Optimisation and testing. In Jurgen J. Vinju and
Adrian Johnstone, editors, Eighth Workshop on Language Descriptions,
Tools and Applications (LDTA 2008), volume 238 of Electronic Notes in
Theoretical Computer Science, pages 17-33, Budapest, Hungary, 2009.
Elsevier.

Anya Helene Bagge and Magne Haveraaen. Interfacing concepts: Why
declaration style shouldn’t matter. In Torbjorn Ekman and Jurgen J.
Vinju, editors, Proceedings of the Ninth Workshop on Language
Descriptions, Tools and Applications (LDTA '09), volume 253 of Electronic
Notes in Theoretical Computer Science, pages 37-50, York, UK, 2010.
Elsevier.

Anya Helene Bagge and Magne Haveraaen. Programming by concept.
Unpublished manuscript, 2013.

Anya Helene Bagge and Magne Haveraaen. Specification of generic
APIs, or: Why algebraic may be better than pre/post. In Proceedings of
the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, HILT "14, pages 71-80, New York, NY, USA, 2014. ACM.

Anya Helene Bagge, Valentin David, Magne Haveraaen, and

Karl Trygve Kalleberg. Stayin’ alert: Moulding failure and exceptions
to your needs. In Proceedings of the 5th International Conference on
Generative Programming and Component Engineering (GPCE "06), pages
265-274, Portland, Oregon, October 2006. ACM Press.

Anya Helene Bagge, Valentin David, and Magne Haveraaen. The
axioms strike back: Testing with concepts and axioms in C++. In GPCE
'09: Proceedings of the Eighth International Conference on Generative
Programming and Component Engineering, pages 15-24, New York, NY,
USA, 2009. ACM.

Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it clean with
syntax parameters. In Proc. Workshop on Scheme and Functional
Programming, Portland, Oregon, 2011.

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software Engineering, 30(6):
355-371, 2004.

http://wasdett.org/2013/submissions/wasdett2013_submission_10.pdf
http://wasdett.org/2013/submissions/wasdett2013_submission_10.pdf

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Don S. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proceedings of Software Product Line Conference (SPLC),
pages 7-20, September 2005.

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily
Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-HochstadLt.
Pycket: A tracing JIT for a functional language. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, pages 22-34, New York, NY, USA, 2015. ACM.

David Benavides, Sergio Segura, and Antonio Ruiz-Cort’es.
Automated analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615 — 636, 2010.

Bergen Language Design Laboratory. Anyxporter. URL
https://github.com/bldl/anyxporter.

Bergen Language Design Laboratory. The Magnolia programming
language, 2013. http://magnolia-lang.org/.

BlackBerry. BlackBerry Developer. URL
http://developer.blackberry.com/. Retrieved May 2013.

BlackBerry. BlackBerry 10 Native SDK 10.0.9. Software distribution,
December 2012.

Martin Bravenboer and Yannis Smaragdakis. Exception analysis and
points-to analysis: Better together. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ISSTA 09,
pages 1-12, New York, NY, USA, 2009. ACM.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. Stratego/XT 0.17. A language and toolset for program
transformation. Science of Computer Programming, 72(1-2):52-70, June
2008. Special issue on experimental software and toolkits.

Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. A
procedure for designing abstract interfaces for device interface
modules. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 195-204. IEEE Computer Society Press, 1981.

Ali Cehreli. Programming in D. Ali Cehreli, 2016. Revision: 2016-04-06.

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L.
McDonell, and Vinod Grover. Accelerating Haskell array codes with
multicore GPUs. In Proceedings of the Workshop on Declarative Aspects of
Multicore Programming (DAMP), January 2011.

Hans Chalupsky and Robert M. MacGregor. STELLA - a Lisp-like

language for symbolic programming with delivery in Common Lisp,
C++ and Java. In Proceedings of Lisp User Group Meeting, 1999.

179

https://github.com/bldl/anyxporter
http://magnolia-lang.org/
http://developer.blackberry.com/

BiBLiOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

180

Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton, Jr., Evelyn
Duesterwald, and Jurgen Vinju. Accelerating the creation of
customized, language-specific IDEs in Eclipse. In Proceedings of the 24th
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’09, pages 191-206, New York,
NY, USA, 2009. ACM.

Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini.
Reusable components of semantic specifications. In Transactions on
Aspect-Oriented Software Development XII, volume 8989 of Lecture Notes
in Computer Science, pages 132-179. Springer, 2015.

William Clinger and Jonathan Rees. Macros that work. In Proceedings of
the 18th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ‘91, pages 155-162, New York, NY, USA,
1991. ACM.

ClojureScript, 2016. URL
https://github.com/clojure/clojurescript.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michat Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Proceedings of the
22nd International Conference on Theorem Proving in Higher Order Logics,
TPHOLs '09, pages 23—42, Berlin, Heidelberg, 2009. Springer-Verlag.

William R. Cook. On understanding data abstraction, revisited. In
Proceedings of Onward! Essays, pages 557-572, 2009.

Ryan Culpepper. Fortifying macros. Journal of Functional Programming,
22:439-476, September 2012.

Ryan Culpepper and Matthias Felleisen. A stepper for Scheme macros.
In Proceedings of the 2006 Scheme and Functional Programming Workshop,
September 2006.

Ryan Culpepper and Matthias Felleisen. Debugging macros. In
Proceedings of the 6th International Conference on Generative Programming
and Component Engineering, GPCE '07, pages 135-144, New York, NY,
USA, 2007. ACM.

Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic abstraction
in component interfaces. In Proceedings of the 4th International Conference
on Generative Programming and Component Engineering, GPCE’05, pages
373-388, Berlin, Heidelberg, 2005. Springer-Verlag.

Evan Czaplicki and Stephen Chong. Asynchronous functional reactive
programming for GUIs. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
411422, New York, NY, USA, June 2013. ACM Press.

Olivier Danvy. Back to direct style. Science of Computer Programming, 22
(3):183-195, 1994.

https://github.com/clojure/clojurescript

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Merijn de Jonge. Build-level components. IEEE Trans. Software Eng., 31
(7):588-600, 2005.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of
the Smalltalk-80 system. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’84, pages 297-302, New York, NY, USA, 1984. ACM.

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan
Vitek. Terra: A multi-stage language for high-performance computing.
SIGPLAN Not., 48(6):105-116, June 2013.

Tim Disney, Nathan Faubion, David Herman, and Cormac Flanagan.
Sweeten your JavaScript: Hygienic macros for ES5. In Proceedings of the
Dynamic Languages Symposium, October 2014.

Eelco Dolstra. Integrating software construction and software
deployment. In Bernhard Westfechtel and André van der Hoek,
editors, Proceedings of 11th International Workshop on Software
Configuration Management (SCM-11), volume 2649 of Lecture Notes in
Computer Science, pages 102-117, May 2003.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic
abstraction in Scheme. Lisp Symb. Comput., 5(4):295-326, 1992.

Carl Eastlund. Modular Proof Development in ACL2. PhD thesis,
Northeastern University, 2012.

Carl Eastlund and Matthias Felleisen. Hygienic macros for ACL2. In
Proceedings of Trends in Functional Programming (TFP), 2010.

Burak Emir, Martin Odersky, and John Williams. Matching objects with
patterns. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 4609 of LNAI, pages 273-298, 2007.

Sebastian Erdweg and Felix Rieger. A framework for extensible
languages. In Proceedings of the 12th International Conference on
Generative Programming: Concepts & Experiences, GPCE "13, pages 3-12,
New York, NY, USA, 2013. ACM.

Sebastian Erdweg, Tillmann Rendel, Christian Késtner, and Klaus
Ostermann. Sugar]: Library-based syntactic language extensibility. In
Proceedings of the 2011 ACM International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA "11, pages
391-406, New York, NY, USA, 2011. ACM.

Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language
composition untangled. In Proceedings of the 12th Workshop on Language
Descriptions, Tools, and Applications, LDTA 12, pages 1-8, New York,
NY, USA, 2012. ACM.

Stuart I. Feldman. Make — a program for maintaining computer
programs. Software: Practice and Experience, 9(4):255-265, 1979.

181

BiBLiOGRAPHY

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

182

Matthias Felleisen, Mitch Wand, Daniel Friedman, and Bruce Duba.
Abstract continuations: A mathematical semantics for handling full
jumps. In Proceedings of the 1988 ACM Conference on LISP and Functional
Programming, LFP '88, pages 52-62, New York, NY, USA, 1988. ACM.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram
Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.
The Racket manifesto. In Thomas Ball, Rastislav Bodik, Shriram
Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett, editors, Ist
Summit on Advances in Programming Languages (SNAPL 2015),

volume 32 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 113-128, Dagstuhl, Germany, 2015. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Mattias Felleisen. The theory and practice of first-class prompts. In
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL '88, pages 180-190, New York, NY,
USA, 1988. ACM.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS '11,
pages 627-638, 2011.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika
Chin, and David Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the Eighth Symposium on
Usable Privacy and Security, SOUPS 12, pages 3:1-3:14, 2012.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt,
Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: A programming environment for Scheme. J. Funct.
Program., 12(2):159-182, March 2002.

David Fisher and Olin Shivers. Building language towers with
Ziggurat. Journal of Functional Programming, 18(5-6):707-780, September
2008.

Matthew Flatt. Programming Languages for Reusable Software
Components. PhD thesis, Rice University, Houston, Texas, June 1999.

Matthew Flatt. Composable and compilable macros: You want it
when? In International Conference on Functional Programming (ICEFP),
pages 72-83, October 2002.

Matthew Flatt. Submodules in Racket: You want it when, again? In
12th International Conference on Generative Programming (GPCE "13).
ACM, October 2013.

Matthew Flatt. Binding as sets of scopes. In Proceedings of the 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2015.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI '98, pages
236248, New York, NY, USA, 1998. ACM.

Matthew Flatt and PLT. Reference: Racket. Technical Report
PLT-TR-2010-1, PLT Inc., 2010. http://racket-lang.org/trl/.

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.
Adding delimited and composable control to a production
programming environment. In International Conference on Functional
Programming (ICFP 2007), pages 165-176, October 2007.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing
the book on ad hoc documentation tools. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’09),
pages 109-120, August 2009.

Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce
Findler. Macros that work together: Compile-time bindings, partial
expansion, and definition contexts. J. Funct. Program., 22(2):181-216,
March 2012.

John D. Gannon, Paul R. McMullin, and Richard G. Hamlet.
Data-abstraction implementation, specification, and testing. ACM
Trans. Program. Lang. Syst., 3(3):211-223, 1981.

Blaine Garst. Apple’s extensions to C. Technical Report N1370, WG14,
March 2009.

David Gay and Alex Aiken. Memory management with explicit
regions. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ‘98, pages
313-323, New York, NY, USA, 1998. ACM.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to
networked embedded systems. SIGPLAN Not., 38(5):1-11, May 2003.

J. A. Goguen. Parameterized programming. IEEE Transactions on
Software Engineering, SE-10(5):528-543, September 1984.

J.A. Goguen. Reusing and interconnecting software components.
Computer, 19(2):16-28, 1986.

Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model
theory for specification and programming. J. ACM, 39(1):95-146, 1992.

Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine. Concepts: linguistic support for
generic programming in C++. In OOPSLA “06: Proceedings of the 21st
annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 291-310, New York, NY,
USA, 2006. ACM.

183

http://racket-lang.org/tr1/

BiBLiOGRAPHY

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

184

James W. Grenning. Test-Driven Development for Embedded C. The
Pragmatic Programmers, LLC, April 2011.

Maarit Harsu. A survey on domain engineering. Technical Report 31,
Institute of Software Systems, Tampere University of Technology, 2002.

Tero Hasu. ContextLogger2—a tool for smartphone data gathering.
Technical Report 2010-1, Helsinki Institute for Information Technology
HIIT, Aalto University, August 2010.

Tero Hasu. Concrete error handling mechanisms should be
configurable. In Proceedings of the 5th International Workshop on Exception
Handling (WEH'12), pages 46—48. IEEE, June 2012.

Tero Hasu. Managing language variability in source-to-source
compilers by transforming illusionary syntax. In Proceedings of the 2nd
International Workshop on Open and Original Problems in Software
Language Engineering (OOPSLE 2014), pages 11-14, February 2014.

Tero Hasu and Matthew Flatt. Source-to-source compilation in Racket:
You want it in which language? In Preproceedings of the 26nd Symposium
on Implementation and Application of Functional Languages (IFL 2014),
October 2014.

Tero Hasu and Matthew Flatt. Source-to-source compilation via
submodules. In Proceedings of the 9th European Lisp Symposium (ELS
2016), May 2016.

Tero Hasu and Magne Haveraaen. Errors as data values as the
language default. In Proceedings of 27th Nordic Workshop on
Programming Theory (NWPT 2015), October 2015.

Tero Hasu and Magne Haveraaen. Errors as data values. In Proceedings
of the Norwegian Informatics Conference (NIK), November 2016. To

appear.

Tero Hasu, Anya Helene Bagge, and Magne Haveraaen. Inferring
required permissions for statically composed programs. In H. Riis
Nielson and D. Gollmann, editors, NordSec 2013, volume 8208 of
Lecture Notes in Computer Science, pages 51-66, Berlin, Heidelberg,
October 2013. Springer-Verlag.

Magne Haveraaen and Eric G. Wagner. Guarded algebras: Disguising
partiality so you won’t know whether it’s there. In Recent Trends In
Algebraic Development Techniques, volume 1827 of Lecture Notes in
Computer Science, pages 3-11. Springer-Verlag, 2000.

Craig Heath. Symbian OS Platform Security: Software Development Using
the Symbian OS Security Architecture. Wiley, February 2006.

David Herman and Philippe Meunier. Improving the static analysis of
embedded languages via partial evaluation. In Proceedings of the Ninth
ACM SIGPLAN International Conference on Functional Programming
(ICFP’04), pages 16-27. ACM Press, September 2004.

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

David Hernie. Windows Phone 8 security deep dive. Slide set, October
2012.

William A. Hetrick, Charles W. Krueger, and Joseph G. Moore.
Incremental return on incremental investment: Engenio’s transition to
software product line practice. In Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 06, pages 798-804, New York, NY, USA, 2006.
ACM.

Tasuku Hiraishi, Masahiro Yasugi, and Taiichi Yuasa. Experience with
SC: Transformation-based implementation of various language
extensions to C. In International Lisp Conference 2007, pages 103-113,
Cambridge, UK, 2007.

Urs Holzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with polymorphic inline
caches. In European Conference on Object-Oriented Programming
(ECOOP’91), volume 512 of Lecture Notes in Computer Science, pages
21-38. Springer Berlin Heidelberg, 1991.

IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754™-2008).
IEEE Computer Society, August 2008.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes. The implementation of Lua 5.0. Journal of Universal Computer
Science, 11(7):1159-1176, July 2005.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP "13, pages 145-158, New York, NY, USA,
2013. ACM.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990.

Antti Kantee and Heikki Vuolteenaho. Experiences in portable mobile
application development. In Proceedings of First International Workshop
on Advanced Software Engineering: Expanding the Frontiers of Software
Technology, Santiago, Chile, August 2006.

Deepak Kapur, David R. Musser, and Alexander A. Stepanov. Tecton:
A language for manipulating generic objects. In J. Staunstrup, editor,
Proceedings of a Workshop on Program Specification, Lecture Notes in
Computer Science, pages 402—414, Aarhus, Denmark, August 1981.
Springer-Verlag.

Christian Késtner, Sven Apel, and Klaus Ostermann. The road to
feature modularity? In Proceedings of the 3rd International Workshop on
Feature-Oriented Software Development (FOSD), pages 5:1-5:8, New York,
NY, September 2011. ACM Press.

185

BiBLiOGRAPHY

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

186

Christian Késtner, Klaus Ostermann, and Sebastian Erdweg. A
variability-aware module system. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 773-792, New York, NY,
October 2012. ACM Press.

Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench.
Rules for declarative specification of languages and IDEs. In Martin
Rinard, editor, Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2010), pages 444-463, October 2010.

Andrew Kelley. Introduction to the Zig programming language,
February 2016. URL
http://andrewkelley.me/post/intro-to-zig.html.

Richard Kelsey, William Clinger, Jonathan Rees, Hal Abelson, N. I.
Adams IV, R. Kent Dybvig, Christopher T. Haynes, Guillermo J. Rozas,
Daniel P. Friedman, D. H. Bartley, R. Halstead, D. Oxley, Eugene
Kohlbecker, G. J. Sussman, G. Brooks, Chris Hanson, Guy L.. Steele, Jr,
Kent M. Pitman, and Mitchell Wand. Revised® report on the
algorithmic language Scheme. SIGPLAN Not., 33(9):26-76, 1998.

Oleg Kiselyov, Simon Peyton-Jones, and Amr Sabry. Lazy v. yield:
Incremental, linear pretty-printing. In 10th Asian Symposium on
Programming Languages and Systems (APLAS), pages 190-206, December
2012.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A domain
specific language for source code analysis and manipulation. In SCAM
'09: Proceedings of the 2009 Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 168-177, Washington,
DC, USA, 2009. IEEE Computer Society.

Donald E. Knuth. Semantics of context-free languages. Journal of
Mathematical System Theory, 2(2):127-145, 1968.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming, LFP 86, pages 151-161,
New York, NY, USA, 1986. ACM.

Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example:
Deriving syntactic transformations from their specifications. In
Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL '87), 1987.

Kari Kostiainen, Elena Reshetova, Jan-Erik Ekberg, and N. Asokan.
Old, new, borrowed, blue — a perspective on the evolution of mobile
platform security architectures. In Proceedings of the First ACM
Conference on Data and Application Security and Privacy, CODASPY 11,
pages 13-24, 2011.

http://andrewkelley.me/post/intro-to-zig.html

[116] Evgenii Kotelnikov. Type-directed language extension for effectful
computations. In Proceedings of the Fifth Annual Scala Workshop, SCALA
"14, pages 35-43, New York, NY, USA, 2014. ACM.

[117] Beyongcheol Lee, Robert Grimm, Martin Hirzel, and Kathryn S.
McKinley. Marco: Safe, expressive macros for any language. In
European Conference on Object Oriented Programming (ECOOP), June
2012.

[118] Shuying Liang, Matthew Might, Thomas Gilray, and David Van Horn.
Pushdown exception-flow analysis of object-oriented programs,
February 2013. URL http://arxiv.org/abs/1302.2692.

[119] Alexander Lier, Linus Franke, Marc Stamminger, and Kai Selgrad. A
case study in implementation-space exploration. In Proceedings of the
9th European Lisp Symposium (ELS 2016), May 2016.

[120] Linj, 2013. URL https://github.com/xach/linjl

[121] Jed Liu and Andrew C. Myers. JMatch: Iterable abstract pattern
matching for Java. In Proceedings of the 5th International Symposium on
Practical Aspects of Declarative Languages (PADL’03), pages 110-127,
January 2003.

[122] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of
Abstract Data Types. Wiley, November 1996.

[123] Geoffrey Mainland. Why it’s nice to be quoted: Quasiquoting for
Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell
Workshop, Haskell '07, pages 73-82, New York, NY, USA, 2007. ACM.

[124] Conor McBride and Ross Paterson. Applicative programming with
effects. J. Funct. Program., 18(1):1-13, January 2008.

[125] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and
Ben Lippmeier. Optimising purely functional GPU programs. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP), September 2013.

[126] Microsoft. Microsoft Developer Network. URL
http://msdn.microsoft.com/. Retrieved Jul 2013.

[127] Zaur Molotnikov, Markus Volter, and Daniel Ratiu. Automated
domain-specific C verification with mbeddr. In Proceedings of the
International Conference on Automated Software Engineering (ASE 2014),
2014.

[128] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A
pattern matching compiler for multiple target languages. In Proceedings
of the International Conference on Compiler Construction, volume 2622 of
Lecture Notes in Computer Science, pages 61-76, 2003.

[129] Ben Morris, editor. Introduction to bada — A Developer’s Guide. Wiley,
2010.

187

http://arxiv.org/abs/1302.2692
https://github.com/xach/linj
http://msdn.microsoft.com/

BiBLiOGRAPHY

[130] mssf-team. Mobile Simplified Security Framework, May 2012. URL
http://gitorious.org/meego-platform-security.

[131] Nokia Corporation. Nokia Developer. URL
http://www.developer.nokia.com/. Retrieved May 2013.

[132] Nokia Corporation. Qt Mobility 1.2: Qt Mobility project reference
documentation, 2011. URL http://doc.qt.digia.com/qtmobility/.

[133] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Piischel. Spiral in Scala: Towards the systematic construction
of generators for performance libraries. In International Conference on
Generative Programming: Concepts & Experiences (GPCE), pages 125-134,
October 2013.

[134] Chris Okasaki. Views for Standard ML. In In SIGPLAN Workshop on
ML, pages 14-23, 1998.

[135] Scott Owens and Matthew Flatt. From structures and functors to
modules and units. In Proceedings of International Conference on
Functional Programming (ICFP 2006), pages 87-98, September 2006.

[136] John Pagonis. Architecture, paradigms, idioms and weirdness of the
C++ in your pocket! A slideset presented at ACCU Conference, April
2007.

[137] Parenscript, 2016. URL
https://common-lisp.net/project/parenscript/.

[138] Christian L. Petersen, Matthias Gorges, Dustin Dunsmuir, Mark
Ansermino, and Guy A. Dumont. Experience report: Functional
programming of mHealth applications. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming, ICFP "13,
pages 357-362, New York, NY, USA, 2013. ACM.

[139] Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Trans. Program. Lang. Syst., 22(1):1-44, January 2000.

[140] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe.
Experience report: a do-it-yourself high-assurance compiler. In
Proceedings of the Intl. Conference on Functional Programming (ICFP).
ACM, September 2012.

[141] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe.
Copilot: monitoring embedded systems. Innovations in Systems and
Software Engineering: Special Issue on Software Health Management, 9(4):
235-255, 2013.

[142] Gordon Plotkin and John Power. Adequacy for algebraic effects. In
Furio Honsell and Marino Miculan, editors, Proceedings of the 4th
International Conference Foundations of Software Science and Computation
Structures (FOSSACS), pages 1-24, Berlin, Heidelberg, April 2001.
Springer Berlin Heidelberg.

188

http://gitorious.org/meego-platform-security
http://www.developer.nokia.com/
http://doc.qt.digia.com/qtmobility/
https://common-lisp.net/project/parenscript/

[143] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In
Giuseppe Castagna, editor, Proceedings of the 18th European European
Symposium on Programming (ESOP 2009), pages 80-94, Berlin,
Heidelberg, March 2009. Springer Berlin Heidelberg.

[144] Justin Pombrio and Shriram Krishnamurthi. Hygienic resugaring of
compositional desugaring. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, pages
75-87, New York, NY, USA, 2015. ACM.

[145] Christian Prehofer. Feature-oriented programming: A fresh look at
objects. In Proceedings of 11th European Conference on Object-Oriented
Programming (ECOOP’97), volume 1241 of Lecture Notes in Computer
Science, pages 419-443. Springer Berlin Heidelberg, 1997.

[146] Qt Wiki. Coding conventions, January 2016. URL
https://wiki.qt.io/Coding_Conventions.

[147] Jon Rafkind and Matthew Flatt. Honu: Syntactic extension for
algebraic notation through enforestation. In Proceedings of the 11th
International Conference on Generative Programming and Component
Engineering, GPCE "12, pages 122-131, New York, NY, USA, 2012. ACM.

[148] Pedro Ramos and Anténio Leitdo. An implementation of Python for
Racket. In European Lisp Symposium, May 2014.

[149] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide.
Knit: Component composition for systems software. In Proceedings of
the 4th Symposium on Operating Systems Design and Implementation
(OSDI'00), pages 347-360, 2000.

[150] Tiark Rompf and Martin Odersky. Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled DSLs. In
Proceedings of the Ninth International Conference on Generative
Programming and Component Engineering, GPCE "10, pages 127-136,
New York, NY, USA, 2010. ACM.

[151] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin
Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. Optimizing data structures in high-level
programs: New directions for extensible compilers based on staging.
In Proceedings of the 40th Symposium on Principles of Programming
Languages (POPL “13), January 2012.

[152] Jane Sales, editor. Symbian OS Internals. Wiley, 2005.

[153] Samsung. bada Developers. URL http://developer.bada. com.
Retrieved Mar 2013.

[154] Samsung. bada SDK 2.0.0. Software distribution, August 2011.

[155] Kai Selgrad, Alexander Lier, Markus Wittmann, Daniel Lohmann, and
Marc Stamminger. Defmacro for C: Lightweight, ad hoc code
generation. In European Lisp Symposium, May 2014.

189

https://wiki.qt.io/Coding_Conventions
http://developer.bada.com

BiBLiOGRAPHY

[156] Kai Selgrad, Alexander Lier, Jan Dorntlein, Oliver Reiche, and Marc
Stamminger. A high-performance image processing DSL for
heterogeneous architectures. In Proceedings of the 9th European Lisp
Symposium (ELS 2016), May 2016.

[157] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Haskell '02: Proceedings of the 2002 ACM SIGPLAN Workshop
on Haskell, pages 1-16, New York, NY, USA, 2002. ACM.

[158] Anthony Sloane. Lightweight language processing in Kiama. In
Generative and Transformational Techniques in Software Engineering I11,
volume 6491 of Lecture Notes in Computer Science, pages 408—425.
Springer, 2011.

[159] Anthony M. Sloane. Experiences with domain-specific language
embedding in Scala. In Proceedings of the 2nd International Workshop on
Domain-Specific Program Development, 2008.

[160] Christopher Strachey. Fundamental concepts in programming
languages. Higher-Order and Symbolic Computation, 13(1/2):11-49, 2000.

[161] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, USA, 3rd edition, 1997.

[162] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf,
Hassan Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and
Kunle Olukotun. OptiML: An implicitly parallel domain-specific
language for machine learning. In Proceedings of the International
Conference on Machine Learning, 2011.

[163] Sagar Sunkle, Marko Rosenmiiller, Norbert Siegmund, Syed Saif
ur Rahman, Gunter Saake, and Sven Apel. Features as first-class
entities—toward a better representation of features. In Proceedings of
Workshop on Modularization, Composition, and Generative Techniques for
Product Line Engineering, pages 27-34, October 2008.

[164] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks.
Lightweight monadic programming in ML. In Proceedings of the ACM
International Conference on Functional Programming (ICFP), pages 15-27,
September 2011.

[165] Don Syme, Gregory Neverov, and James Margetson. Extensible pattern
matching via a lightweight language extension. In Proceedings of the
12th ACM SIGPLAN International Conference on Functional Programming.
ACM, October 2007.

[166] Tizen Project. Tizen Developers dev guide. URL
https://developer.tizen.org/, Retrieved May 2013.

[167] Tizen Project. Tizen SDK 2.0. Software distribution, February 2013.

[168] Sam Tobin-Hochstadt. Extensible pattern matching in an extensible
language. CoRR, abs/1106.2578, 2011.

190

https://developer.tizen.org/

[169] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. Languages as libraries. SIGPLAN Not., 47
(6):132-141, June 2011.

[170] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-value A-calculus using a stack of regions. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL '94, pages 188-201, New York, NY, USA, 1994. ACM.

[171] Mads Tofte and Jean-Pierre Talpin. Region-based memory
management. Inf. Comput., 132(2):109-176, February 1997.

[172] Federico Tomassetti and Daniel Ratiu. Extracting variability from C
and lifting it to mbeddr. In Proceedings of REVE 2013 Workshop, 2013.

[173] David Turner. Robust design techniques for C programs, 2014. URL
http://freetype.sourceforge.net/david/reliable-c.html. Draft
paper, retrieved in August 2014.

[174] UBM Electronics. 2012 Embedded Market Survey, 2012.

[175] L. Thomas van Binsbergen, Neil Sculthorpe, and Peter D. Mosses. Tool
support for component-based semantics. In Companion Proceedings of
the 15th International Conference on Modularity, pages 8-11. ACM, 2016.

[176] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee. The Koala component model for consumer electronics
software. IEEE Computer, 33(3):78-85, March 2000.

[177] Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski.
Forwarding in attribute grammars for modular language design. In
Proc. 11th International Conf. on Compiler Construction (CC 2002), volume
2304 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[178] T. Vidas, N. Christin, and L. Cranor. Curbing Android permission
creep. In Proceedings of the Web 2.0 Security and Privacy 2011 Workshop
(W2SP 2011), Oakland, CA, May 2011.

[179] Eelco Visser. Strategic pattern matching. In P. Narendran and
M. Rusinowitch, editors, Rewriting Techniques and Applications (RTA’99),
volume 1631 of Lecture Notes in Computer Science, pages 30-44, Trento,
Italy, July 1999. Springer-Verlag.

[180] Eelco Visser. Stratego: A language for program transformation based
on rewriting strategies. System description of Stratego 0.5. In
A. Middeldorp, editor, Rewriting Techniques and Applications (RTA '01),
volume 2051 of Lecture Notes in Computer Science, pages 357-361.
Springer-Verlag, May 2001.

[181] Markus Voelter. Generic Tools, Specific Languages. PhD thesis, Delft
University of Technology, 2014.

[182] Markus Voelter and Sascha Lisson. Supporting diverse notations with
MPS’ projectional editor. In Proceedings of GEMOC 2014 Workshop, 2014.

191

http://freetype.sourceforge.net/david/reliable-c.html

BiBLiOGRAPHY

[183] Markus Voelter and Eelco Visser. Product line engineering using
domain-specific languages. In Proceedings of the 15th International
Software Product Line Conference (SPLC), 2011.

[184] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb.
mbeddr: an extensible C-based programming language and IDE for
embedded systems. In Proceedings of SPLASH Wavefront 2012, 2012.

[185] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz.
mbeddr: Instantiating a language workbench in the embedded
software domain. Automated Software Engineering, 20(3):1-52, 2013a.

[186] Markus Voelter, Daniel Ratiu, and Federico Tomassetti. Requirements
as first-class citizens. In Proc. Modellbasierte Entwicklung eingebetteter
Systeme IX, MBEES 13, Schloss Dagstuhl, 2013b.

[187] Markus Voelter, Arie van Deursen, Bernd Kolb, and Stephan Eberle.
Using C language extensions for developing embedded software: A
case study. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, pages 655-674, New York, NY, USA,
October 2015. ACM.

[188] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic
abstraction. In Principles of Programming Languages, 1999.

[189] Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 87, pages
307-313, 1987.

[190] Philip Wadler. Monads for functional programming. In Advanced
Functional Programming, volume 925 of LNCS, pages 24-52.
Springer-Verlag, 1995.

[191] Elecia White. Making Embedded Systems: Design Patterns for Great
Software. O’'Reilly Media, November 2011.

[192] Kevin Williams, Matt Le, Ted Kaminski, and Eric Van Wyk. A compiler
extension for parallel matrix programming. In International Conference
on Parallel Processing (ICPP-2014), September 2014.

[193] David W. Wood. Smartphones and Beyond: Lessons from the remarkable rise
and fall of Symbian. David W. Wood, 2014.

[194] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: An
extensible attribute grammar system. Science of Computer Programming,
75(1-2):39-54, 2010.

[195] Danny Yoo and Shriram Krishnamurthi. Whalesong: Running Racket
in the browser. In Proceedings of the 9th Dynamic Languages Symposium
(DLS 2013), pages 97-108, New York, NY, USA, October 2013. ACM.

192

Adams [1],[177]
Adams [2015],3] 20

Allen et al. [2],[76] [177]

Android Open Source Project [3],
P2 177

Auetal. [4],02) 177

Au et al. [5],[10} [177]

Bagge [10],[177]

Bagge [2009],[14]

Bagge [2010a], [13T} [163|

Bagge [2010b],

Bagge [2012],[108|

Bagge [2013], 14} [T6] 24} [158]

Bagge [6],[177]

Bagge [7],[177]

Bagge [8],[177]

Bagge [9], 05} [177]

Bagge and Hasu [11],[T7§]

Bagge and Hasu [2013],[19} [147]
d61l

Bagge and Haveraaen [12],[178]

Bagge and Haveraaen [13],[95] [178]

Bagge and Haveraaen [14],[95] [178]

Bagge and Haveraaen [15],[178]

Bagge and Haveraaen [2009], (18]
159

Bagge and Haveraaen [2010],[T4

Bagge and Haveraaen [2013],[17]
Bagge and Haveraaen [2014],[14}
Bagge et al. [16],[05, [178]

Bagge et al. [17],[178]

Bagge et al. [2006], @@
(18 [119] %

Bagge et al. [2009], [T59]
Barzilay et al. [18],
Barzilay et al. [2011], 20} [125]
Batory [20],[17§]

Citation Index

Batory [2005],

Batory et al. [19],
Bauman et al. [2015],[54]
Bauman et al. [21],[179]
Benavides et al. [22],[102}
Bergen Language Design

Laboratory [23],
Bergen Language Design

Laboratory [24],
BlackBerry [25],[03] [179]
BlackBerry [26],[03} [179)

Bravenboer and Smaragdakis

[2009], [0

Bravenboer and Smaragdakis [27],

Bravenboer et al. [2008],

Bravenboer et al. [28],

Britton et al. [1981],[7]

Britton et al. [29],[T79]

Cehreli [2016],[144]

Cehreli [30], 179

Chakravarty et al. [2011], 36}

Chakravarty et al. [31],[I79]

Chalupsky and MacGregor [1999],
53} [150]

Chalupsky and MacGregor [32],

Charles et al. [2009],

Charles et al. [33],[179]

Churchill et al. [2015],

Churchill et al. [34], [I80]

Clinger and Rees [1991], 3} 20|

Clinger and Rees [35],

ClojureScript [2016], 53]

ClojureScript [36],[180]

Cohen et al. [37],[102} [I80]

Cook [38],

Culpepper [2012], [£5|

Culpepper [39],[I80]

193

CrtaTION INDEX

Culpepper and Felleisen [2006],
Culpepper and Felleisen [2007],
Culpepper and Felleisen [40],[I80]
Culpepper and Felleisen [41],

Culpepper et al. [2005],
[135HT37 [T41]

Culpepper et al. [42],

Czaplicki and Chong [2013], [T6§|

Czaplicki and Chong [43],[180]

Danvy [1994],

Danvy [44],

de Jonge [2005], [TT} [12]

de Jonge [45],

Deutsch and Schiffman [46],[82)
[181]

DeVito et al. [2013],[55]

DeVito et al. [47], B0} [I8]

Disney et al. [48],[76] [181]

Dolstra [2003], [T} [12]

Dolstra [49], [181]

Dybvig et al. [1992], 20)

Dybvig et al. [50],[181]

Eastlund [2012],

Eastlund [51],[18]]
Eastlund and Felleisen [52],[72]

Emir et al. [53],
Erdweg and Rieger [2013],
Erdweg and Rieger [54],
Erdweg et al. [2011],[164]
Erdweg et al. [2012],[14]

Erdweg et al. [55],
Erdweg et al. [56], 181
Feldman [1979], (11|

Feldman [57], [187]

Felleisen [1988],[124]

Felleisen [60],

Felleisen et al. [1988],
Felleisen et al. [2015],[14) 56|
Felleisen et al. [58],[187]
Felleisen et al. [59],[182]

Felt et al. [61],[90}[92 [101]}
Felt et al. [62],[00}[182]

Findler et al. [2002],
Findler et al. [63],[182]

Fisher and Shivers [2008],[54]
Fisher and Shivers [64],[182]
Flatt [1999],

Flatt [2002],

Flatt [2013], [I5, 3

Flatt [2015], 20} [136]

194

Flatt [65],[182]
Flatt [66],[182]
Flatt [67],[182]

Flatt [68],

Flatt and Felleisen [1998],
Flatt and Felleisen [69],[182]

Flatt and PLT [2010], 3} [[35)

Flatt and PLT [70],[60} [183]

Flatt et al. [2007],

Flatt et al. [2009],

Flatt et al. [2012],[20] 22] [44} [47) [136]

Flatt et al. [71],[I83]
Flatt et al. [72],[183]
Flatt et al. [73],[63} [72} [183]
Gannon et al. [1981],[1§]
Gannon et al. [74],[183]
Garst [2009], B0]
Garst [75],[183]
Gay and Aiken [1998], [126]
Gay and Aiken [76],
Gay et al. [2003],
Gay et al. [77],[{102}|183]
Goguen [1984], 29} 136
Goguen [1986],(136|
Goguen [78],
Goguen [79],
Goguen and Burstall [1992],
Goguen and Burstall [80],
Gregor et al. [2006], [T4]
Gregor et al. [81],[183]
Grenning [2011],
Grenning [82]
Harsu [2002], (6
Harsu [83],[184]
Hasu [2010],9]
Hasu [2012], [160]
Hasu [2014],

[

[

Hasu [84],[90] [184]

Hasu [85],[184]

Hasu [86],[59) [184]

Hasu and Flatt [2014],

Hasu and Flatt [2016],
Hasu and Flatt [87],

Hasu and Flatt [88],[60} [80} [184]
Hasu and Haveraaen [2015], [105]
Hasu and Haveraaen [2016], [105]
Hasu and Haveraaen [89],
Hasu and Haveraaen [90],
Hasu et al. [2013],[87]

Hasu et al. [91],[184]

Haveraaen and Wagner [2000], 32}

Haveraaen and Wagner [92], @
Heath [93],

Herman and Meunier [2004],
Herman and Meunier [94],[184]
Hernie [95],[94} [184]

Hetrick et al. [2006],

Hetrick et al. [96],[185]

Hiraishi et al. [2007],
Hiraishi et al. [97], [185]

Holzle et al. [98],[82] [185]

IEEE [2008], [[T0} [[27]

IEEE [99],[I85)

Ierusalimschy et al. [100],
Ierusalimschy et al. [2005],
Kammar et al. [101], [185]
Kammar et al. [2013],[12§]

Kang et al. [102],[I85]

Kang et al. [1990],[§]

Kantee and Vuolteenaho [103],
Kantee and Vuolteenaho [2006], 27]
Kapur et al. [104],

Kapur et al. [1981],

Kastner et al. [105],

Késtner et al. [106],

Kastner et al. [2011],[7]

Kistner et al. [2012],[15]

Kats and Visser [107],[70} [186]
Kats and Vlsser [2010], 24} BT} [T64]
Kelley [108],

Kelley 2016]

Kelsey et al. [109], [[-E

Kelsey et al. [1998], 20, [2T]
Kiselyov et al. [110],[186]
Kiselyov et al. [2012],[161

Klint et al. [111],[70]

Klint et al. [2009], 51|

Knuth [112],[8§]

Knuth [1968],

Kohlbecker and Wand [114],
Kohlbecker and Wand [1987], [20]
Kohlbecker et al. [113],[186]
Kohlbecker et al. [1986], B} 20]
Kostiainen et al. [115],[90} P2} [186]
Kotelnikov [116],[186]
Kotelnikov [2014],

Lee et al. [117],[79[187

Liang et al. [118],
Liang et al. [2013],

Lier et al. [119],[187]

Lier et al. [2016],[162]

Linj [120], @

Linj [2013],6

Liu and Myers [121],[78} [85} [187]

Loeckx et al. [122], [[H

Loeckx et al. [1996],[17]

Mainland [123],[187]

Mainland [2007],

McBride and Paterson [124],

McBride and Paterson [2008], [128]

McDonell et al. [125],[187]

McDonell et al. [2013],[B5]

Microsoft [126],[91} 04} [187]

Molotnikov et al. [127],[187]

Molotnikov et al. [2014],

Moreau et al. [128],[77] [187]

Morris [129],[187]

Morris [2010],[9]

mssf-team [130],

Nokia Corporation [131],

Nokia Corporation [132],

Ofenbeck et al. [133],[188]

Ofenbeck et al. [2013],[54]

Okasaki [134],

Owens and Flatt [135],[188

Owens and Flatt [2006],

Pagonis [136],

Pagonis [2007],

Parenscript [137],[188]

Parenscript [2016],

Petersen et al. [138

Petersen et al. [2013],[162]

Pierce and Turner [139],[188]

Pierce and Turner [2000],[147]

Pike et al. [140], [188]

Pike et al. [141],

Pike et al. [2012],

Pike et al. [2013],[55]

Plotkin and Power [142],[188]

Plotkin and Power [2001],

Plotkin and Pretnar [143],

Plotkin and Pretnar [2009],

Pombrio and Krishnamurthi [144],

Pombrio and Krishnamurthi
[2015],

Prehofer [145],[189]

Prehofer [1997],[7]

Qt Wiki [146], [T89]

195

CrtaTION INDEX

Qt Wiki [2016], 9]

Rafkind and Flatt [147],[76} [T89]
Rafkind and Flatt [2012],[5]]
Ramos and Leitdo [148],[189
Ramos and Leitdo [2014], 51
Reid et al. [149], [189]

Reid et al. [2000], [T1} [16]
Rompf and Odersky [150], [T89]
Rompf and Odersky [2010],
Rompf et al. [151],

Rompf et al. [2012], 54

Sales [152],[189]

Sales [2005], 27]

Samsung [153],02} [189

Samsung [154],
Selgrad et al. [155],

Selgrad et al. [156], 189
Selgrad et al. [2014], |55
Selgrad et al. [2016],[162]
Sheard and Jones [157],
Sheard and Jones [2002],[12§]

Sloane [158],[73][190]
Sloane [159],[78] [190]
Strachey [160],[T90]
Strachey [2000],
Stroustrup [161],
Stroustrup [1997],
Sujeeth et al. [162],[190
Sujeeth et al. [2011], |54
Sunkle et al. [163],[190]
Sunkle et al. [2008],[7]
Swamy et al. [164],{190]
Swamy et al. [2011], {126} [128]

Syme et al. [165], @ Eja 190]
Tizen Project [166],

Tizen Project [167] .
Tobin- Hochstadt [168],163 . [76]
Tobin-Hochstadt etal. [169],[79]

190
Tobin-Hochstadt et al. [2011],

a6} [117 142

Tofte and Talpin [170], [191]]
Tofte and Talpin [171], [19]]
Tofte and Talpin [1994], [126]
Tofte and Talpin [1997],[126]

196

Tomassetti and Ratiu [172],[197]
Tomassetti and Ratiu [2013],[165]
Turner [173],[19]]

Turner [2014],[123]

UBM Electronics [174],[197]
UBM Electronics [2012], 4] [164]
van Binsbergen et al. [175],[197]
van Binsbergen et al. [2016], 2]
van Ommering et al. [176],

van Ommering et al. [2000], [15) [16]
Van Wyk et al. [177], [191]

Van Wyk et al. [2002],

Vidas et al. [178],[02] [101] [197]
Visser [179],[77,[191]

Visser [180],[63} [197]

Voelter [181],[197]

Voelter [2014], B} [T43] [169]
Voelter and Lisson [182],
Voelter and Lisson [2014],
Voelter and Visser [183],[191
Voelter and Visser [2011],
Voelter et al. [184],[192]

Voelter et al. [185],[192]

Voelter et al. [186],[192]

Voelter et al. [187],[79]
Voelter et al. [2012],[164]
Voelter et al. [2013a],
Voelter et al. [2013b], [165]
Voelter et al. [2015], 29]
Waddell and Dybvig [188],[192]
Waddell and Dybvig [1999],[51}

Wadler [189],[61} 63 [69} [70} [77} [192]
Wadler [190],[192]

Wadler [1995],[126} [127]

White [191],[9F]

White [2011],B0]

Williams et al. [192],[192]
Williams et al. [2014], [163]

Wood [193],[192]

Wood [2014], [

Wyk et al. [194],[192]

Wyk et al. [2010],[163]

Yoo and Krishnamurthi [195],[192]
Yoo and Krishnamurthi [2013],[54]

<*,

20

:access, [66]
:alert,[118|
:also,[67]
:field,[66]
:handler, [11§|
:just,[64]

#lang,
#:magnolisp, [145]
#%magnolisp, [44]
#:many,

#:maybe,
#%module-begin,
#%module-begin (in Magnolisp),
#:none, [64]
#:partial,[6§]
#:predicate,[6§
#:traversable,[/]]

abstract data type,
abstract syntax tre
access capability, O1]

ADT, see abstract data type

alert,[99]
algebra, [T10]

algebraic effect,

algebraic specification, [T11]
all,

annotate,

annotation (in AST objects),
annotation (in source Code),

Anyxporter, 08|
Apache Cordova, 28|

FH O H M W H W W O F e

Index

API, short for application
programming interface
applicative functor,

asset,
AST, see abstract syntax tree

axiom, [111
axiom-based testing,

bada,[]

BB10, see BlackBerry 10

begin-for-syntax,

BlackBerry 10,

BLDL, short for Bergen Language
Design Laboratory

Bool,

built-in (variable),

care equivalency,

carrier set,

C classes, [152

CGen,

CLlI, short for command-line
interface

C-Mera, [162

component,

component system,

concept (as a programming
language construct),

configuration management, [7]

configuration parameter,

constructor, [63]

copy function, [68]

Cordova, 28]

CORE, [44]

core asset, [2]

core language, [p1]

data invariant, [116]
data source, 08|
declare (in Erdac, .),[122]

197

INDEX

declare (in Erdag,), [IT§]

declare (in Magnolisp), [49]

define-ast,[64]

define-direct,[143

define-for-syntax,

define-generics,

define (in Erdagy),

define (in Magnolisp),[37]

define (in Racket),

define-match-expander,

define-syntax,

define-syntax-rule,

define-view,

definition context,

direct style,

DLL, short for dynamic-link library

DMPL, short for Design of a
Mouldable Programming
Language

do,

domain engineering,

domain-oriented language,

domain-oriented programming,

DSL, short for domain-specific
language

dynamic-require,

effect handler,
Elements, [162
Erdac, ,,[121

erda/cxx (module),
ErdaG Ar

Erda (language family),[T17]
error extension, [T14]
error history, [112]

error monad, [126]
export, 37]

external linkage, [T4]

feature,[7]

feature model,

Feature-Oriented Domain
Analysis, [§]

Ferret, [149]

FFI, see foreign function interface

fodselsnummer, [T10]

field, [63]

final algebra, [T12]

FODA, see Feature-Oriented
Domain Analysis

198

foreign,37]
foreign function interface, [137]

for-syntax,

GCC, short for GNU Compiler
Collection

general compile-time binding,

generic method,

GHC, short for Glasgow Haskell
Compiler

GID, short for group identifier

GNU, short for GNU’s Not Unix

GNU Make, [156]

goodness axiom, [TT7]

GPU, short for graphics processing
unit

guarded algebra, [T09]

guarded signature,

guarded specificati(%

GUI, short for graphical user
interface

handler function, [I10]
Harmattan, 26]

Haxe, [165]

history of failed expressions, [112
Honu,

hygiene, 20|

hygienic macro, 20]

IDE, short for integrated
development
environment

identifier,

identifier table, [46]

if-then,[117]

Hlusyn, [63]

IMP, 24]

initial algebra, [T12]

interface,

intermediate representation,

internal-definition context,

invocation (of components), @

IR, see intermediate representation

ISV, short for independent software
vendor

Kiama, [78]
Konffaa, 0]
konffaa (command),[134]

konffaa (module), [I0]

LambdaNative, [162]

language (in Racket), [4T]

leave,

leaving, [152]

let-direct,[125]

Lightweight Modular Staging, [54]

linking (of components), [135]

LMS, see Lightweight Modular
Staging

local-expand, 22|

Maak, [12

macro, [19]

macro expander, [35]

macro expansion, [19]

Magnolia, [05]

Magnolisp, 36]

Magnolisp, [132]

magnolisp/2014 (module),[I5]

Magnolispai: (language family),
132

Magnolisp:pase (core language),

Magnolisp-based language,

Magnolisppase (language family),
32

magnolisp/base (module),[I5]

Magnolispc. ., [149

Magnolisp- cxx (core language),
[149]

Magnolispg,4,, [T43]

Magnolispiang (language family),
132

magnolisp (module),
MagnolispQ
Magnolispy,
magnolisp-s2s (submodule),
Magnolispsypian, [151
Magnolispy,,
Magnolisp*?,

Make, [T1]
make-module-begin, [50]
make-view-one, [71]
mapped type, [153]
match, 63

match expander, [69]
mbeddr, [164]

mbeddr C,[164]

MeeGo Harmattan, 26]
metadata, [45]
MetaMagnolia,
mglc (command
moc (command), 22]
mock,

model,

module, [T5]

module+,

module context, [136

module expression, [136]

module system, [T5]

monad, [126]

mouldability, @

MSSF, short for Mobile Simplified
Security Framework

NDT, see node data type
nesC,

niche platform, (1]

node data type,

node type,
non-primitive (variable),

one, [64]

OS, short for operating system
Oxygene, [19]

parameter mode, [95]

parenting,

partiality,

pattern (for syntax),

pattern variable,

PC, short for personal computer

permission,

permission-based security model,
90

phase separation,

PhoneGap,
PIM, short for personal

information management
PL, short for programming
languages
PLA, see product-line architecture
platform,
PLE, see product-line engineering
postcondition, [T16]
precondition, [115]
predicate expression, [95]
prefix-in, [50]

199

INDEX

prefix-out, 50|
primitives,[37]

primitive (variable), A3]
production tool,
product line, 2]
product-line architecture,
product-line engineering,@
provide,

provides interface,
PScout,

PureScript,

QML,

Qt,

quasiquotation (of syntax), 20]
quote-syntax, [136]

Racket, 3]

Racket-based language,

raco make (command),

RAII, short for Resource
Acquisition Is
Initialization

R class,

reader,

rec,

redo, [119

referentially transparent macro, @l

referential transparency, [10§

RemObjects Elementﬁ

rename transformer,

REPL, short for read—eval-print
loop

require, 42|

requires interface,

RTTI, short for run-time type
information

Rust, [128]

Sailfish OS, 26

SC,[B5l

SDK, short for software
development kit

signature,

Silver, @@

smartphone, 26]

some, [64]

source location,

source-to-source compiler,

static-cond,
STELLA, B3|

200

struct, [63]

structure, [63]

structure type,
sub-form expansion,
submodule,

Sugar], 164

Sugar*,[164]

sweet.js, /6|

Symbian OS,
symbiotic language,
syntactic macro,
syntax-case, E’E
syntax object,
syntax property, 43|
syntax quasiquote,
syntax quote,

syntax-quoted code, [4§]
syntax-rules, 21|

syntax unquote, [20]
template (for syntax), 20]
Terra,

TinyOS,

Tizen,

topdown, [71]

total,[129]

transcompiler,

transformer binding,
try,[119

two-phase construction, [152]

type,[37]
typedef,37]

U], short for user interface
UID, short for user identifier

unit,
value,

variant of a system, [§]
VDT, see view data type
view, [69]

view data type,
VM, short for virtual machine

Void, [49]

with-syntax, 21|
WPS, short for Windows Phone 8

XML, short for Extensible Markup
Language

Zig, [127

	Preface
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Domain Engineering
	1.3 Configuration Management
	1.4 Mouldable Programming Languages
	1.5 Product-Line Development Kits
	1.6 Target Languages, APIs, and Systems
	1.7 A Niche Platform Software Production Strategy
	1.8 Outline

	2 Adopting a Macro System
	2.1 Introduction
	2.2 Magnolisp
	2.3 Hosting a Transcompiled Language in Racket
	2.4 Evaluation
	2.5 Motivation for Racket-Hosted Transcompilation
	2.6 Related Work
	2.7 Conclusion

	3 Abstract Data Representations for Abstract Syntax
	3.1 Introduction
	3.2 Motivation for Abstraction-Friendly AST APIs
	3.3 The Illusyn Library
	3.4 Node Interfaces and View Data Types
	3.5 Algebraic Views for Pattern Matching
	3.6 View-Directed Traversals
	3.7 Macro-Based Generation of APIs
	3.8 AST Abstraction Scheme
	3.9 Related Work
	3.10 Discussion
	3.11 Conclusion

	4 Permission Management
	4.1 Introduction
	4.2 Permission-Based Security Models in Smartphone Operating Systems
	4.3 The Magnolia Programming Language
	4.4 Language Support for Permissions
	4.5 Experience with Application Integration
	4.6 Problematic Permission Requirements
	4.7 Related Work
	4.8 Conclusion

	5 Error Handling
	5.1 Introduction
	5.2 Guarded Algebras
	5.3 Automatic Pervasive Error Handling
	5.4 Erda
	5.5 Discussion
	5.6 Related Work
	5.7 Conclusion

	6 Mouldable-Language-Based Niche-Platform Product Lines
	6.1 The Magnolisp Language Family and Infrastructure
	6.2 A Product-Line Architecture
	6.3 Managing Configurations with Konffaa
	6.4 A Macro-Implemented Component System
	6.5 Composing Programs in Magnolispr
	6.6 Cross-Component Error Handling in MagnolispErda
	6.7 A #lang Configurable mglc
	6.8 More Dynamic Portable Programming in Magnolispu
	6.9 Integrating with Targets in MagnolispC++ et al.
	6.10 Macro-Based Mapped Types
	6.11 Resolving Build Dependencies
	6.12 Capturing Build Domain Knowledge
	6.13 A Product-Line Development Environment

	7 Discussion
	7.1 Benefits, Shortcomings, and Uncertainties
	7.2 Related Work

	8 Conclusion
	8.1 Contributions
	8.2 Niche Platform Strategy Summary
	8.3 Software API Summary

	Bibliography
	Citation Index
	Index

