
Programming Language Technology
for Niche Platforms

Tero Hasu

BLDL and University of Bergen

Bergen, 3 March 2017

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

more markets, more opportunities

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

motivation
▶ readiness to pursue niche platform opportunities

chosen strategy
▶ have multi-platform software production tooling

built around an adaptable programming language
capable of existing in variations of itself

thesis’ contributions
▶ technologies

▶ and suggestions for applying them

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

overview

1. niche platforms
2. strategy
3. technologies / papers (chapters 2–5)

▶ Source-to-Source Compilation via Submodules
▶ Illusionary Abstract Syntax
▶ Inferring Required Permissions for Statically Composed Programs
▶ Declarative Propagation of Errors as Data Values

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

part 1: niche platforms

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

niche platform, defined
▶ a platform:

▶ software can be written for it, and run on it
▶ a niche platform: one without a large developer ecosystem

▶ e.g., Symbian, BB10, Harmattan

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

niche platforms

problems
▶ few developers → socially limiting
▶ few libraries, tools → poor dev experience
▶ not established → discontinuation risk

advantages
▶ little competition → app discoverability, unit price, ”bribery”

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

software development tools

▶ compiler
▶ IDE
▶ emulator
▶ on-target debugger
▶ build manager
▶ toolchain
▶ …

… tools for packaging, installation, localization, file formats
(executables, resource files, help files, bitmaps, certificates, printer
drivers, …), …

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

unfamiliar tools

Symbian toolchain
abld, bldmake, bmconv, elf2e32, makedef, makmake, rcomp, …

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

languages

programming languages
▶ C, C++, JavaScript, …

little languages
▶ project description languages

▶ qmake, MMP, ”tizen-manifest.xml”, …

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

custom and standard languages
makmake project (MMP)
TARGETTYPE exe
TARGET bldl_anyxporter.exe
UID 0x100039ce 0xeb1d1001
EPOCSTACKSIZE 0x10000
EPOCHEAPSIZE 0x020000 0x800000
CAPABILITY ReadUserData

”Symbian C++”
_LIT(KConsoleTitle, "Anyxporter");
CConsoleBase* console =
Console::NewL(KConsoleTitle,
TSize(KConsFullScreen, KConsFullScreen));

CleanupStack::PushL(console);

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

APIs / vocabulary

Symbian
CBase, CActive, User, CleanupStack, …

Qt
QObject, QString, QList, QMap, QVariant, …

Tizen 2.3
tizen_error_e, event_cb, event_handler_h, …

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

platform lifespans

Psion Series 5

▶ 1997–2001
▶ EPOC release 5

▶ became Symbian OS

Pebble
▶ 2013–2016
▶ Pebble OS

▶ at Fitbit?

”Burning Platform” by Micky Aldridge (CC BY 2.0)

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

https://www.flickr.com/photos/gsi-r/5430344580/
https://creativecommons.org/licenses/by/2.0/

part 2: strategy

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

constraint

▶ play nice with platforms (APIs, languages, tools)
▶ coexist, do not fight

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

product families

▶ multiple product configurations
▶ to suit different platforms

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

product lines

▶ systematically manage multiple product configurations
▶ to suit different platforms

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

wanted: ”containment”
▶ knowledge about platform

1. languages
2. APIs
3. tools

→ limit the extent to which one must acquire and remember it

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

managing platform specifics: languages

▶ program in a familiar translatable language
▶ one to shield us from target languages
▶ one that we control

▶ can customize to capture idioms, etc.

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

single target language scenario

physical
units

mbeddr C

reduce

state
machines

reduce

C

translate

BeagleBoard

compile
program

MinnowBoard

compile
program

OpenEmbedded-Core

build
firmware

build
firmware

▶ specific mbeddr C
▶ C-like language

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

multiple target language scenario

physical
units

OneLang

reduce

OneLang-C

reduce

state
machines

reduce

C

translate

Swift

translate translate

Samsung Z2
(with Tizen 3.0)

compile
program

iPhone 7
(with iOS)

compile
program

▶ agnostic OneLang
▶ unoriented

language
▶ specific OneLangC

▶ C-oriented
language

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

one language technology base
▶ ”one” language to rule all them platforms—through variation

▶ same look and feel
▶ same programming environment

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

managing platform specifics: APIs

▶ hide specifics under abstract APIs

typedef struct _Engine* Engine; // abstract data type
Engine Engine_new(MyError* error);
boolean Engine_export_all_contacts(
Engine obj, const char* filename, MyError* error);

void Engine_destroy(Engine obj);

▶ wanted: API parameterization for purposes of code composition
▶ e.g., code to use for reading contacts
▶ e.g., code to use for writing to a file

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

agnostic API management language

▶ e.g., Magnolia

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

program composition

Engine

program

compose

TizenContacts
(Tizen specific)

parameterize
with a

Contacts

CFileSys
(C language specific)

parameterize
with a
FileSys

Samsung Z2
(with Tizen 3.0)

compile
program

program TizenContactsExporter = {
use Engine;
use TizenContacts;
use CFileSys;

};

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

managing platform specifics: tools

▶ write makefiles or scripts to drive vendor tools
▶ use tools to source build configuration information

▶ e.g., from API annotations (§4)

PLATFORM := symbian
PERMISSIONS := NetworkServices ReadUserData

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

part 3: technologies

Source-to-Source Compilation via Submodules

Tero Hasu
BLDL and University of Bergen

tero@ii.uib.no

Matthew Flatt
PLT and University of Utah

mflatt@cs.utah.edu

ABSTRACT
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of a
new language differs significantly from Racket’s core, macros of-
fer a maintainable approach to implementing a larger language by
desugaring into the core. Users of the language gain the benefits
of Racket’s programming environment, its build management, and
even its macro support (if macros are exposed to programmers of
the new language), while Racket’s syntax objects and submodules
provide convenient mechanisms for recording and extracting pro-
gram information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

CCS Concepts
•Software and its engineering Ñ Extensible languages; Trans-
lator writing systems and compiler generators;

Keywords
Language embedding, module systems, separate compilation

1. INTRODUCTION
A macro expander supports the extension of a programming lan-

guage by translating extensions into a predefined core language. A
source-to-source compiler (or transcompiler for short) is similar, in
that it takes source code in one language and produces source code
for another language. Since both macro expansion and source-to-
source compilation entail translation between languages, and since
individual translation steps can often be conveniently specified as
macro transformations, a macro-enabled language can provide a
convenient platform for implementing a transcompiler.

Racket’s macro system, in particular, not only supports language
extension—where the existing base language is enriched with new
syntactic forms—but also language definition—where a completely

new language is implemented though macros while hiding or adapt-
ing the syntactic forms of the base language. Racket’s macro sys-
tem is thus suitable for implementing a language with a different or
constrained execution model relative to the core Racket language.

Magnolisp is a Racket-based language that targets embedded de-
vices. Relative to Racket, Magnolisp is constrained in ways that
make it more suitable for platforms with limited memory and pro-
cessors. For deployment, the Magnolisp compiler transcompiles a
core language to C++. For development, since cross-compilation
and testing on embedded devices can be particularly time consum-
ing, Magnolisp programs also run directly on the Racket virtual
machine (VM) using libraries that simulate the target environment.

Racket-based languages normally target only the Racket VM,
where macros expand to a core Racket language, core Racket is
compiled into bytecode form, and then the bytecode form is run:

Racket-based
language

macroexpand
core Racket

Racket VM
run

bytecode

compile

To instead transcompile a Racket-based language, Magnolisp could
access the representation of a program after it has been macro-
expanded to its core (via the read and expand functions). Fully
expanding the program, however, would produce Racket’s core lan-
guage, instead of Magnolisp’s core language. External expansion
would also miss out on some strengths of the Racket environment,
including automatic management of build dependencies.

Magnolisp demonstrates an alternative approach that takes full
advantage of Racket mechanisms to assemble a “transcompile time”
view of the program. The macros that implement Magnolisp ar-
range for a representation of the core program to be preserved in
the Racket bytecode form of modules. That representation can be
extracted as input to the mglc compiler to C++:

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

In this picture, the smaller boxes correspond to a core-form recon-
struction that is only run in transcompile-time mode (as depicted by
the longer arrow of the “run” step). The boxes are implemented as

ECEASST

Managing Language Variability in Source-to-Source Compilers
by Transforming Illusionary Syntax

Tero Hasu∗

Bergen Language Design Laboratory
Department of Informatics

University of Bergen, Norway
tero@ii.uib.no

Abstract:
A programming language source-to-source compiler with human-readable output
likely operates on a somewhat source and target language specific program object
model. A lot of implementation investment may be tied to transformation code writ-
ten against the specific model. Yet, both the source and target languages typically
evolve over time, and compilers may additionally support user-specified, domain-
specific language customization. Language workbenches commonly support gen-
erating object model implementations based on grammar or data type definitions,
and programming of traversals in generic ways. Could more be done to declara-
tively specify abstractions for insulating the more language-semantic transforma-
tions against changes to source and target language syntax? For example, the idea
of views enables pattern matching and abstract data types to coexist—could similar
abstractions be made pervasive in a generated program object model?

Keywords: Language adaptation, program representation, Racket, transcompilers

1 Introduction

A programming language implemented as a compiler generating source code allows for reuse
of existing infrastructure for the target language. Such a language can also enable abstraction
over target language versions, implementations, and idioms (such cross-cutting concerns can
be particularly pressing in a cross-platform setting). If the source-code-generating compiler fur-
thermore produces human-readable, high-abstraction-level output, then it also has a low adoption
barrier in the sense that it can be regarded merely as tools assistance for programming in the tar-
get language. We use the term source-to-source compiler (or transcompiler for short) for such
language implementations.1

A transcompiler typically translates its source language into its target language through suc-
cessive program transformation steps. Each transformation step is programmed against a pro-
gram object model (POM), which includes at least a data structure used to represent a program,
∗ This research has been supported by the Research Council of Norway through the project DMPL—Design of a
Mouldable Programming Language.
1 An established definition for the term “source-to-source compiler” encompasses any compiler that produces its
output in a high-level language, even when the output itself is low-level enough to read like assembly. For lack of a
dedicated term for our more narrow definition, we simply use “source-to-source compiler” in the more narrow sense.

1 / 4 Volume X (2014)

Inferring Required Permissions for Statically
Composed Programs

Tero Hasu, Anya Helene Bagge, and Magne Haveraaen

Bergen Language Design Laboratory
Department of Informatics

University of Bergen, Norway
http://www.ii.uib.no/~{tero,anya,magne}

Abstract. Permission-based security models are common in smartphone
operating systems. Such models implement access control for sensitive
APIs, introducing an additional concern for application developers. It is
important for the correct set of permissions to be declared for an applica-
tion, as too small a set is likely to result in runtime errors, whereas too large
a set may needlessly worry users. Unfortunately, not all platform vendors
provide tools support to assist in determining the set of permissions that
an application requires.

We present a language-based solution for permission management. It
entails the specification of permission information within a collection of
source code, and allows for the inference of permission requirements for a
chosen program composition. Our implementation is based on Magnolia,
a programming language demonstrating characteristics that are favorable
for this use case. A language with a suitable component system supports
permission management also in a cross-platform codebase, allowing ab-
straction over different platform-specific implementations and concrete
permission requirements. When the language also requires any “wiring”
of components to be known at compile time, and otherwise makes de-
sign tradeoffs that favor ease of static analysis, then accurate inference
of permission requirements becomes possible.

Keywords: language-based security, platform security architectures,
security management, software engineering.

1 Introduction

Permission-based security models have become commonplace in real-world,
consumer-faced operating systems. Such models have been adopted mostly for
mobile OS platform security architectures, partly because smartphones are high-
utility personal devices with privacy and usage cost concerns (regulations and
business models have also driven adoption [21]). Smartphones are also natively
third-party programmable (by our definition), and the wide consumer awareness
of “app stores” has made it almost an expectation that applications (or “apps”)
are available for installation in large numbers. While some smartphone platforms

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 51–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Errors as Data Values

Tero Hasu Magne Haveraaen
Bergen Language Design Laboratory

Department of Informatics
University of Bergen, Norway

http://www.ii.uib.no/~{tero,magne}

Abstract
A “thrown” exception is a non-local side effect that complicates static
reasoning about code. Particularly in functional languages it is fairly
common to instead propagate errors as ordinary values. The propagation
is sometimes done in monadic style, and some languages include syntactic
conveniences for writing expressions in that style. We discuss a guarded-
algebra-inspired approach for integrating similar, implicit error propagation
into a language with “normal” function application syntax. The presented
failure management approach accommodates language designs with all-
referentially-transparent expressions. It furthermore supports automatically
checking data invariants and function pre- and post-conditions, recording a
trace of any due-to-an-error unevaluateable or failed expressions, and in some
cases retaining “bad” values for potential use in recovering from an error.

1 Introduction
Traditional error handling mechanisms include explicit checking and propagation of
error return values, as well as try/catch-style language constructs for intercepting non-
local-returning, exceptional control transfers triggered by errors. The return-value-based
mechanism has the drawback of requiring extensive “manual code generation.” The
exception-throwing mechanism avoids that by transferring control over any code not
capable of handling errors, but this comes at the cost of making static reasoning about
code harder.

The difficulty of understanding errors and their propagation through code is the
cause of much end user trouble. For example, an advanced editor for XML documents
may provide an interactive scripting facility and a powerful substitution mechanism. A
user may inadvertently provide a recursive substitution pattern causing the text buffer
to overflow in the middle of an editing script. Let us consider three different possible
outcomes (in increasing order of preference): 1 the problem goes “undetected,” causing
inconsistencies in the editor’s document representation, and resulting in a corrupted
document when the panicked user hits the save button; 2 the editor crashes, causing
the user to lose the current edits; or 3 the editor detects the problem, undoes the effect
of the script, but also presents the user with the text, the current edit script with all user

This paper was presented at the NIK-2016 conference; see http://www.nik.no/.

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2–5 technologies

▶ for adaptable, translatable programming languages

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2–3 language processing

▶ for implementing adaptable, translatable programming languages

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2

Source-to-Source Compilation via Submodules

Tero Hasu
BLDL and University of Bergen

tero@ii.uib.no

Matthew Flatt
PLT and University of Utah

mflatt@cs.utah.edu

ABSTRACT
Racket’s macro system enables language extension and definition
primarily for programs that are run on the Racket virtual machine,
but macro facilities are also useful for implementing languages and
compilers that target different platforms. Even when the core of a
new language differs significantly from Racket’s core, macros of-
fer a maintainable approach to implementing a larger language by
desugaring into the core. Users of the language gain the benefits
of Racket’s programming environment, its build management, and
even its macro support (if macros are exposed to programmers of
the new language), while Racket’s syntax objects and submodules
provide convenient mechanisms for recording and extracting pro-
gram information for use by an external compiler. We illustrate
this technique with Magnolisp, a programming language that runs
within Racket for testing purposes, but that compiles to C++ (with
no dependency on Racket) for deployment.

CCS Concepts
•Software and its engineering Ñ Extensible languages; Trans-
lator writing systems and compiler generators;

Keywords
Language embedding, module systems, separate compilation

1. INTRODUCTION
A macro expander supports the extension of a programming lan-

guage by translating extensions into a predefined core language. A
source-to-source compiler (or transcompiler for short) is similar, in
that it takes source code in one language and produces source code
for another language. Since both macro expansion and source-to-
source compilation entail translation between languages, and since
individual translation steps can often be conveniently specified as
macro transformations, a macro-enabled language can provide a
convenient platform for implementing a transcompiler.

Racket’s macro system, in particular, not only supports language
extension—where the existing base language is enriched with new
syntactic forms—but also language definition—where a completely

new language is implemented though macros while hiding or adapt-
ing the syntactic forms of the base language. Racket’s macro sys-
tem is thus suitable for implementing a language with a different or
constrained execution model relative to the core Racket language.

Magnolisp is a Racket-based language that targets embedded de-
vices. Relative to Racket, Magnolisp is constrained in ways that
make it more suitable for platforms with limited memory and pro-
cessors. For deployment, the Magnolisp compiler transcompiles a
core language to C++. For development, since cross-compilation
and testing on embedded devices can be particularly time consum-
ing, Magnolisp programs also run directly on the Racket virtual
machine (VM) using libraries that simulate the target environment.

Racket-based languages normally target only the Racket VM,
where macros expand to a core Racket language, core Racket is
compiled into bytecode form, and then the bytecode form is run:

Racket-based
language

macroexpand
core Racket

Racket VM
run

bytecode

compile

To instead transcompile a Racket-based language, Magnolisp could
access the representation of a program after it has been macro-
expanded to its core (via the read and expand functions). Fully
expanding the program, however, would produce Racket’s core lan-
guage, instead of Magnolisp’s core language. External expansion
would also miss out on some strengths of the Racket environment,
including automatic management of build dependencies.

Magnolisp demonstrates an alternative approach that takes full
advantage of Racket mechanisms to assemble a “transcompile time”
view of the program. The macros that implement Magnolisp ar-
range for a representation of the core program to be preserved in
the Racket bytecode form of modules. That representation can be
extracted as input to the mglc compiler to C++:

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

In this picture, the smaller boxes correspond to a core-form recon-
struction that is only run in transcompile-time mode (as depicted by
the longer arrow of the “run” step). The boxes are implemented as

▶ European Lisp Symposium (ELS 2016)
▶ Kraków

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 Source-to-Source Compilation via Submodules

presents
A technique for arranging for further compilation of Racket languages,
post macroexpansion and other desired processing.

achieves
▶ allows extensive reuse of Racket mechanisms
▶ retains support for separate compilation

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 Magnolisp
▶ proof-of-concept software
▶ transcompiled, with a C++ back end

#lang magnolisp

(typedef int
#:: (foreign))

(define (f1 x)
#:: (export

^(-> int int))
(define (g) x)
(g))

MGL_PROTO int f1_g(int const& x);

MGL_API_FUNC int f1(int const& x) {
return f1_g(x);

}

MGL_FUNC int f1_g(int const& x) {
return x;

}

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 defining languages in Racket
▶ a #lang is implemented as a module
▶ specifies a ”reader” to turn text into syntax objects
▶ exports variables, macros, core forms

another-magnolisp
▶ just like magnolisp

#lang racket/base
(module reader syntax/module-reader
another-magnolisp/main
#:wrapper1 (lambda (t) (with-magnolisp-readtable (t)))
(require magnolisp/reader-ext))

(require magnolisp)
(provide (all-from-out magnolisp))

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 technique for source-to-source compilation
▶ allow a language’s macros to target foreign core forms

a.rkt

#lang magnolisp
(require "num-types.rkt")
(define (int-id x)
 #:: ([type (-> int int)] export)
 x)

(module a magnolisp/main
 (#%module-begin

(module magnolisp-s2s racket/base
 (#%module-begin

(define-values (def-lst)
 (#%app list (#%app DefVar)))
....))

....
(#%require "num-types.rkt")
(define-values (int-id))))

a.rkt (core) macroexpand

def-lst

list

DefVar

annos

....

Id

.... int-id

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
 return x;
}

#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);

a.hpp

translate

run

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 host language reuse
▶ reuse Racket’s #lang mechanism for defining languages
▶ reuse Racket’s language environment

▶ expose Racket’s module system to your language
▶ expose Racket’s macro system to your language

▶ rarity: a “language workbench” for self-extensible languages
#lang magnolisp
(define-syntax-rule (if-not c t e)
(if c e t))

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§2 separate compilation
▶ macroexpand and byte-compile only out-of-date modules

▶ e.g., with raco make

compatible with host language philosophy
▶ submodules are intended for defining new ”phases”

▶ here: transcompile time

alternative approaches
▶ e.g., expand externally and serialize into a separate file

▶ more to manage yourself
▶ still byte-compile modules for macroexpansion time use

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 ECEASST

Managing Language Variability in Source-to-Source Compilers
by Transforming Illusionary Syntax

Tero Hasu∗

Bergen Language Design Laboratory
Department of Informatics

University of Bergen, Norway
tero@ii.uib.no

Abstract:
A programming language source-to-source compiler with human-readable output
likely operates on a somewhat source and target language specific program object
model. A lot of implementation investment may be tied to transformation code writ-
ten against the specific model. Yet, both the source and target languages typically
evolve over time, and compilers may additionally support user-specified, domain-
specific language customization. Language workbenches commonly support gen-
erating object model implementations based on grammar or data type definitions,
and programming of traversals in generic ways. Could more be done to declara-
tively specify abstractions for insulating the more language-semantic transforma-
tions against changes to source and target language syntax? For example, the idea
of views enables pattern matching and abstract data types to coexist—could similar
abstractions be made pervasive in a generated program object model?

Keywords: Language adaptation, program representation, Racket, transcompilers

1 Introduction

A programming language implemented as a compiler generating source code allows for reuse
of existing infrastructure for the target language. Such a language can also enable abstraction
over target language versions, implementations, and idioms (such cross-cutting concerns can
be particularly pressing in a cross-platform setting). If the source-code-generating compiler fur-
thermore produces human-readable, high-abstraction-level output, then it also has a low adoption
barrier in the sense that it can be regarded merely as tools assistance for programming in the tar-
get language. We use the term source-to-source compiler (or transcompiler for short) for such
language implementations.1

A transcompiler typically translates its source language into its target language through suc-
cessive program transformation steps. Each transformation step is programmed against a pro-
gram object model (POM), which includes at least a data structure used to represent a program,
∗ This research has been supported by the Research Council of Norway through the project DMPL—Design of a
Mouldable Programming Language.
1 An established definition for the term “source-to-source compiler” encompasses any compiler that produces its
output in a high-level language, even when the output itself is low-level enough to read like assembly. For lack of a
dedicated term for our more narrow definition, we simply use “source-to-source compiler” in the more narrow sense.

1 / 4 Volume X (2014)

▶ International Workshop on Open and Original Problems in
Software Language Engineering (OOPSLE 2014)

▶ Antwerp

more recently
▶ joint work with Anya Helene Bagge

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 Illusionary Abstract Syntax

presents
A scheme for declaratively (in an embedded DSL) implementing
more-abstract-than-usual abstract syntax tree data types.

achieves
▶ ASTs with abstract data types
▶ with some extra flexibility for commonality expression

▶ potential for further DSL innovations
▶ expects compile-time expressive power, little run-time

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 general idea

Use a macro-based embedded DSL for declaring
▶ actual data representations; and
▶ illusionary ones over the above.

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 node data type (NDT)

▶ with named fields
▶ unrelated to other (host language) data types
▶ treated as abstract data—opaque, with operations

▶ predicate, field access, construction
▶ patterns defined, for matching

▶ as (special) macros
▶ translating to operation uses

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 view data type (VDT)

▶ with named fields
▶ uses other type(s) for storage
▶ treated as abstract data—opaque, with operations

▶ predicate, field access, copying
▶ patterns defined, for matching

▶ as (special) macros
▶ translating to operation uses

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 Illusyn

▶ a library for Racket
▶ used in Magnolisp implementation
▶ includes Stratego-style HoFs for rewriting strategies

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 VDTs relate NDTs
▶ can also relate subsets of NDTs

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 VDT vs. NDT APIs
VDT
(define-view V
([#:field v #:use n]))

(V? (N 0)) ;;=> #t
; ; N/A
(copy-V (N 2) 0) ;;=> (N 0)
(V-v (N 3)) ;;=> 3
(set-V-v (N 4) 0) ;;=> (N 0)
(match (N 5) [(V v) v]) ;;=> 5
(V=? (N 6) (N 6)) ;;=> #t

NDT
(define-ast N (V)
([#:none n]))

(N? (N 0)) ;;=> #t
(N 1) ;;=> (N 1)
(copy-N (N 2) 0) ;;=> (N 0)
(N-n (N 3)) ;;=> 3
(set-N-n (N 4) 0) ;;=> (N 0)
(match (N 5) [(N n) n]) ;;=> 5
(N=? (N 6) (N 6)) ;;=> #t

▶ enumerating substructure needs disambiguation
▶ view-directed traversals supported by Illusyn

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§3 product-line use

▶ language translation through successive rewrites
▶ goal: more general and reusable transformation routines

▶ for sharing among core language processors

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4–5 language features

▶ for inclusion in agnostic, translatable programming languages
▶ error prevention
▶ error handling

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 permissions
▶ permission-based security models

▶ popularized by smartphone OSes
▶ access control for sensitive APIs

permission requirements
▶ tend to be vendor specific
▶ can vary even between the

releases of a single platform
▶ for a developer to declare for

programs
▶ optimal set, ideally

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4

Inferring Required Permissions for Statically
Composed Programs

Tero Hasu, Anya Helene Bagge, and Magne Haveraaen

Bergen Language Design Laboratory
Department of Informatics

University of Bergen, Norway
http://www.ii.uib.no/~{tero,anya,magne}

Abstract. Permission-based security models are common in smartphone
operating systems. Such models implement access control for sensitive
APIs, introducing an additional concern for application developers. It is
important for the correct set of permissions to be declared for an applica-
tion, as too small a set is likely to result in runtime errors, whereas too large
a set may needlessly worry users. Unfortunately, not all platform vendors
provide tools support to assist in determining the set of permissions that
an application requires.

We present a language-based solution for permission management. It
entails the specification of permission information within a collection of
source code, and allows for the inference of permission requirements for a
chosen program composition. Our implementation is based on Magnolia,
a programming language demonstrating characteristics that are favorable
for this use case. A language with a suitable component system supports
permission management also in a cross-platform codebase, allowing ab-
straction over different platform-specific implementations and concrete
permission requirements. When the language also requires any “wiring”
of components to be known at compile time, and otherwise makes de-
sign tradeoffs that favor ease of static analysis, then accurate inference
of permission requirements becomes possible.

Keywords: language-based security, platform security architectures,
security management, software engineering.

1 Introduction

Permission-based security models have become commonplace in real-world,
consumer-faced operating systems. Such models have been adopted mostly for
mobile OS platform security architectures, partly because smartphones are high-
utility personal devices with privacy and usage cost concerns (regulations and
business models have also driven adoption [21]). Smartphones are also natively
third-party programmable (by our definition), and the wide consumer awareness
of “app stores” has made it almost an expectation that applications (or “apps”)
are available for installation in large numbers. While some smartphone platforms

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 51–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

▶ 18th Nordic Conference on Secure IT Systems (NordSec 2013)
▶ Ilulissat

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 Inferring Required Permissions for Statically
Composed Programs

presents
A solution for cross-platform permission management.

achieves
▶ tool support for inferring platform-specific permission

requirements from code
▶ language support for abstracting over run-time permission errors

so that they can be handled platform agnostically

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 proof-of-concept implementation
Magnolia

▶ permission inference (was) integrated into its implementation

Anyxporter
▶ example app (available)
▶ https://github.com/bldl/anyxporter

▶ magnolia branch

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

https://github.com/bldl/anyxporter

§4 desirable language characteristics

▶ interface-based abstraction
▶ to support organizing cross-platform codebases

▶ programs are amenable to extensive and accurate reasoning
▶ e.g., by restricting language
▶ e.g., by allowing declaration of properties

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 agnostic error reporting abstraction: alerts

Stayin’ Alert:
Moulding Failure and Exceptions to Your Needs

Anya Helene Bagge Valentin David Magne Haveraaen Karl Trygve Kalleberg
University of Bergen, Norway

{anya,valentin,magne,karltk}@ii.uib.no

Abstract
Dealing with failure and exceptional situations is an important
but tricky part of programming, especially when reusing existing
components. Traditionally, it has been up to the designer of a
library to decide whether to use a language’s exception mechanism,
return values, or other ways to indicate exceptional circumstances.
The library user has been bound by this choice, even though it
may be inconvenient for a particular use. Furthermore, normal
program code is often cluttered with code dealing with exceptional
circumstances.

This paper introduces an alert concept which gives a uniform
interface to all failure mechanisms. It separates the handling of an
exceptional situation from reporting it, and allows for retro-fitting
this for existing libraries. For instance, we may easily declare the
error codes of the POSIX C library for file handling, and then use
the library functions as if C had been extended with an exception
mechanism for these functions – a moulding of failure handling to
the user’s needs, independently of the library designer’s choices.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms Reliability, Languages, Design

Keywords Failure, Errors, Partiality, Guarding, Aspects, Separa-
tion of Concerns, Alert Reporting and Handling, Domain-Specific
Exception Language, Abstraction, Mouldable Programming

1. Introduction
Wherever there is software, there are errors and exceptional situa-
tions, and these must always be considered when writing and main-
taining programs. Programming failure handling code is a tedious
and error-prone task. Dealing with every possible exceptional sit-
uation leads to cluttered and hard to read code; not dealing with
errors can have costly or perhaps even fatal consequences.

Some have argued that error handling should be avoided alto-
gether. Instead, programs should be written so that errors never
occur. Algorithms should be formulated so as to remove the ex-
ceptional corner cases, as this improves both the readability and
maintainability of the code. This view is fundamental to the design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

of SPARK Ada [2], where the Ada exception mechanism has been
removed in an attempt at making validation and verification easier.
This ideal advocated by such a “keep errors out” approach is cer-
tainly desirable. It is generally preferable to write algorithms with
as few corner cases as possible.

In many cases, however, removing the errors altogether is sim-
ply not feasible [27]. Most modern applications run in multi-user,
multi-process environments where they share resources such as
storage and network with other applications. In these situations, op-
erations on files, network connections and similar operating system
resources can always fail, due to interaction with other programs
on the running system or external devices.

Errors and exceptional situations need not always be caused by
external factors, however. Even in situations where resource re-
quirements are known in advance and guaranteed to be available,
exceptional situations may occur, as none of the mainstream lan-
guages support resource-aware type systems [31].

As an example, consider the implementation of a simple abstract
data type, say, a hash table, that is intended for other developers to
reuse. In the case where the user (the caller) tries to look up a value
for a non-existent key, an exceptional situation has occurred. Some
possibilities for dealing with such a situation are:

• Undefinedness: this situation is outside the specified behaviour
of the hash table. The caller cannot have any expectations as to
what will happen.

• Termination: the program will terminate when this situation
occurs. It is up to the caller to ensure that this does not happen.

• Alert the caller: report that an exceptional condition occurred.
Given proper language mechanisms, alerts allow the user of
the hash table to implement alert handling, such as logging,
recovering from or ignoring the failure.

Undefinedness requires no language support, and termination
can usually be implemented by a call to an exit function. In lan-
guages supporting Design by Contract (discussed in Section 2.1),
termination is automatic if a function fails to satisfy declared con-
ditions either before or after invocation.

Several different alert reporting mechanisms are in common
use. Goodenough [10] first introduced the exception handling
mechanism1 that is now found in most modern languages, and is

1 The word ‘exception’ was coined as a way of emphasising that exceptions
are not just for handling errors, but can be used for any kind of exceptional
circumstance. However, it is easy to confuse the concept of handling excep-
tional circumstances and the exception handling language constructs found
in many languages. We have therefore elected to use the word ‘alert’ for
any reported exceptional situation, independent of the alert reporting mech-
anism and the alert handler, which receives the alert report and deals with
it appropriately. The word ‘exception’ on its own will refer to the language
construct.

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 solution: dynamic behavior

1. declare possible run-time permission errors agnostically
▶ e.g., E_PRIVILEGE_DENIED return value

7→ NoPermissionSocial alert
▶ example code in §5

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 solution: static requirements

2. declare platform-specific permission requirements specifically
▶ per operation, per implementation

▶ if opaque (i.e., foreign)
▶ as a predicate expression—commonly need ∧, sometimes ∨

▶ for tools to statically infer permission requirements for a program
▶ e.g., NetworkServices ∧ ReadUserData

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 solution: static analysis
3. infer programs’ permission requirements

▶ based on their reachable uses of operations

exporter
main

program SymbianOwnCloud = {
 use ExporterEngine;
 use SymbianContactsSrc;
 use OwnCloudUploadTgt;
};

compiler

exporter
engine

on NoPermission
in readAll
 dat = emptyColl;
call readAll(w, dat);
call writeAll(w, dat);

Symbian
contacts

readAll:
requires

ReadUserData

implements

ownCloud
uploader

writeAll:
requires

NetworkServices

implements

inferred permissions

NetworkServices && ReadUserData

generates

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§4 solution: platform-specific policy
4. decide on permission requests, using

▶ program configuration information
▶ platform-specific policies

5. insert requests into vendor tools’ “manifest” files

configuration recipe

distribution = side-loaded,
certificate = self-signed,

platform = S60 3.0+
manifest writer

uses

Symbian policy

uses

inferred permissions

compiles

NetworkServices && ReadUserData

manifest

generates

CAPABILITIES NetworkServices ReadUserData

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5

Errors as Data Values

Tero Hasu Magne Haveraaen
Bergen Language Design Laboratory

Department of Informatics
University of Bergen, Norway

http://www.ii.uib.no/~{tero,magne}

Abstract
A “thrown” exception is a non-local side effect that complicates static
reasoning about code. Particularly in functional languages it is fairly
common to instead propagate errors as ordinary values. The propagation
is sometimes done in monadic style, and some languages include syntactic
conveniences for writing expressions in that style. We discuss a guarded-
algebra-inspired approach for integrating similar, implicit error propagation
into a language with “normal” function application syntax. The presented
failure management approach accommodates language designs with all-
referentially-transparent expressions. It furthermore supports automatically
checking data invariants and function pre- and post-conditions, recording a
trace of any due-to-an-error unevaluateable or failed expressions, and in some
cases retaining “bad” values for potential use in recovering from an error.

1 Introduction
Traditional error handling mechanisms include explicit checking and propagation of
error return values, as well as try/catch-style language constructs for intercepting non-
local-returning, exceptional control transfers triggered by errors. The return-value-based
mechanism has the drawback of requiring extensive “manual code generation.” The
exception-throwing mechanism avoids that by transferring control over any code not
capable of handling errors, but this comes at the cost of making static reasoning about
code harder.

The difficulty of understanding errors and their propagation through code is the
cause of much end user trouble. For example, an advanced editor for XML documents
may provide an interactive scripting facility and a powerful substitution mechanism. A
user may inadvertently provide a recursive substitution pattern causing the text buffer
to overflow in the middle of an editing script. Let us consider three different possible
outcomes (in increasing order of preference): 1 the problem goes “undetected,” causing
inconsistencies in the editor’s document representation, and resulting in a corrupted
document when the panicked user hits the save button; 2 the editor crashes, causing
the user to lose the current edits; or 3 the editor detects the problem, undoes the effect
of the script, but also presents the user with the text, the current edit script with all user

This paper was presented at the NIK-2016 conference; see http://www.nik.no/.

▶ Norwegian Informatics Conference (NIK 2016)
▶ Bergen

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 Declarative Propagation of Errors as Data
Values

presents
Portable, non-disruptive, guarded-algebra-inspired error reporting
convention, and language (wide) support for it.

achieves
▶ allows referentially transparent expression language
▶ accommodates “normal” exception syntax

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 possibility of exceptions vs. static reasoning
“Exceptions are not exceptional enough.” (Liang et al.)

(define in
(open-input-file from))

(define out
(open-output-file to))

(copy-port in out)
(close-output-port out)
(close-input-port in)

(define tmp1 (open-input-file from))

(define in tmp1)
(define tmp2 (open-output-file to))

(define out tmp2)
(copy-port in out)

(close-output-port out)
(close-input-port in)

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 data and control flow
▶ shall we just have abnormal data instead of abnormal control?

▶ keep on computing despite uncomputable or unacceptable values

1 2

Erda family of languages
▶ all language-native data values are either good or bad
▶ all operations appear total

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 file copying in ErdaGA

(define in (open-input-file from))
(define out (open-output-file to))
(copy-port in out)
(close-output-port out)
(close-input-port in)

▶ no disruptive flow any longer
▶ now with safe resource cleanup

▶ resource cleanup bookkeeping comes for “free”
▶ but must not try calling primitives with invalid arguments

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 guarded algebras

”error history extension” for primitive functions

f̂(â1, . . . , âk) =


cgood(f(a1, . . . , ak)) if â1 = cgood(a1), …,

âk = cgood(ak) and
a1, . . . , ak are
good arguments for f,

cbad(‘f(â1, . . . , âk)) otherwise.

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 total language in ErdaGA
▶ Erdas extend the entire language, guarded algebra style

▶ just operate—bad happenings become values

> (define bad (raise 'bad))
> bad
(Bad bad: raise bad)
> (if #t 'true 'untrue)
(Good 'true)
> (if bad 'true 'untrue)
(Bad bad-arg: if-then (Bad bad: raise bad) <fun> <fun>)

▶ history of failed expressions recorded
▶ also: redo semantics

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

§5 adapting to foreign conventions
▶ declaratively

▶ a way to capture knowledge about error behavior

example in ErdaC++

▶ E_PRIVILEGE_DENIED return value
7→ NoPermissionSocial alert

▶ example from §4

(declare (read-all-contacts db)
#:: ([type (-> ContactsDatabase ContactsSet)])
#:alert ([NoPermissionSocial post-when

(= value E_PRIVILEGE_DENIED)]))

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

proof-of-concept software
▶ https://bldl.ii.uib.no/software/pltnp/
▶ Erdas, Illusyn, Konffaa, Magnolisp

▶ ErdaC++, ErdaGA, …

Erda-C++

Magnolisp

Racket

Erda-GAIllusyn Konffaa

ErdaC++

▶ a Magnolisp-
based
language

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

https://bldl.ii.uib.no/software/pltnp/

summary

1. niche platforms
2. a strategy for dealing with them
3. technologies for that

▶ source-to-source compiled Racket languages
▶ AST abstract data types, declaratively
▶ permission inference for composed programs
▶ portable error handling, with local control flow

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

programming language technology
▶ §2 macro and module system reuse for translated languages
▶ §3 declared abstract data types for (more) abstract syntax
▶ §4 platform-agnostic permission management
▶ §5 portable and semi-declarative error handling

ultimate goal
Develop a strategy and agnostic-but-specializable languages and tools
for targeting any platform. More platforms, more opportunities.

software and documentation
https://bldl.ii.uib.no/software/pltnp/

contact
tero@ii.uib.no

Tero Hasu (BLDL) Programming Language Technology for Niche Platforms

https://bldl.ii.uib.no/software/pltnp/
mailto:tero@ii.uib.no

