Programmatic Building of Models Just for Pretty
Printing

Tero Hasu
Helsinki Institute for Information Technology
PO Box 9800, FI-02015 TKK, Finland
tero. hasu@iit.fi

Abstract

In-memory object models of programs are commonly built lpjddo facilitate pro-
gram analysis and manipulation. We claim that for some agjiins it makes sense to
construct such models for the sole purpose of pretty pan@md explain the reasoning
behind our claim in this paper. We also describe a tool we kavated to support this
approach to pretty printing; the tool derives, from an aatest grammar, both an object-
oriented API for model building, as well as correspondingtires for pretty-printing
built models.

KEYWORDS: code generation, grammarware, object-orieptedramming, pretty
printing, program representation

1 Introduction

Pretty-printing capability is required in tools intendegtoduce readable source code. There
are a number of ways one might choose to implement prettytipgin In many tools one
requires an abstract syntax tree (AST) of each processeggonofor analysis and/or manip-
ulation, and in those cases it is natural to write a routia¢ titaverses the AST to emit textual
code. However, when implementing a tool that does not tearmsprograms, but rather reads
in some input and generate;mawprogram based on the input, it is far less clear how pretty
printing would best be implemented.

When an AST is not required for code analysis or manipulgborposes, one may choose
from a number of alternative approaches to pretty printinghis paper we explore the idea
of constructing an AST-like model of the program anywayelolor pretty printing purposes.
We talk aboumodes, as in object models specifying what is to be printed. Wedstadking

1

about ASTs, so as not to imply that we are interested in th&gatissyntax of the target
language; we want to know how to print an object, but not nesrdly what specific target
language construct it represents. We focus on model cantistnuthat is done imperatively
and incrementally, by writing statements that instantateé add objects into a model, in any
desired order.

The rest of this paper is organized as follows. In Section @ dvgcuss our pretty-printing
approach in more detail, and consider potential applioatidn Section 3 we introduce a
specific implementation of the approach, by describing & W created to facilitate the
implementation of pretty-printable model builders. Weld@d related work in Section 4, and
conclude in Section 5.

2 ConstructivePretty Printing

We refer to our pretty printing approach @nstructive pretty printingCPP); with this term
we try to emphasize that the defining characteristic of ther@ach is that one explicitly
constructs, bit by bit, a model to be printed. The model dijatay be of different native
types, and to support incremental model building, theyi&edy to contain named fields into
which to insert more objects in any desired order.

An alternative way to “construct” a model is to essentialistjlist its contents, in a declarative
fashion, allowing for variability by letting lists contamon-literal expressions. This approach
is widely used by Lisp programmers at least, and is likelyeguit in somewhat shorter model
building code than in CPP. Theonveniencef writing such code depends largely on how
conveniently one can express a named list in the languagaxsyn

A common code generation approach not involving model mglés to use aemplate engine
(e.g., Smarty, Velocity, Cheetah). teamplate-based code generatid@), one specifies what
to generate using a textual template, but may embed diesciiwthin the text to account for
variability. The directives—usually expressed in the eegimplementation language—are
expanded by the engine. The concept of template enginesysteainderstand, and most
implementations are straightforward to use. These aredesirable properties, but we still
argue that alternative solutions—such as CPP—are morbeifior some applications. We
believe CPP to be a good approach at least in cases where:

e One prefers to program imperatively. It is natural for pedplthink in terms of objects
and actions.

e One wants to concentrate on abstract syntax, without wagrgbout delimiters and
other notation that can be automatically emitted as reduire

e The data to be printed is highly variable. For example, a tatagengine is of little
assistance in printing arithmetic expressions of variédigth and content.

2

¢ One wants all formatting rules in one place. A major problerth vemplate engines is
that formatting information is spread around all the tertgddeing used, and this can
easily lead to inconsistencies. In CPP, code specifyingtto print andhowto print it
is kept separate.

e One requires indentation with variable levels of nestingthiemplate engines, one
must be very careful with whitespace and line breaks to gefdahmatting right, and
even then, producing variable levels of nesting gets ditfidn CPP, the semantics to
decide when to indent can be in the model.

¢ One wants conditional line breaking. If a line is getting tong, one must knowhere
it is okay to break it; again, in CPP, there can be sufficientasgics in the model.

e One simply does not want to work with strings. Code with a fadtang manipulation
tends to be tedious to write and hard to read. In CPP, suchaabe isolated in the
printing routines.

One solution that also suits the above cases, but does rietrgaet our definition of CPP, is
Builder [3]. It is similar to template engines, but in the Bigr case, a template is specified
as Ruby code that programmatically builds an XML documenpfetty printing. The for-
matting of the output text is left to Builder. Sample builgicode and the resulting output is
shown below.

Listing 1: Printing XML with Builder. [3]
Bui | der: : Xm Mar kup. new(: t ar get =>STDCOUT, :i ndent=>2).
person { |b|] b.name("Jim); b.phone("555-1234") }

Listing 2: Builder output.
<per son>
<nane>Ji nx/ name>
<phone>555-1234</phone>
</ per son>

The Builder approach differs from CPP in that each XML eletrfaiilder method, by the
time it returns, will have caused the printing of the entieneent—no model gets builtAs
a result, one has to specify the entire document at onceeiartter in which XML elements
are to appear in the document. CPP is more flexible, but thailiey comes with overhead
in constructing and traversing models.

3 (retty

To support the use of CPP, we developed a tool cajtetty. It is a Ruby library that makes
it possible to dynamically derive, based on an annotateshigrar of a language, an object-

At time of writing, support for generating DOM-like strucas with Builder is planned.

3

oriented API for building models representing expressiarthe languageqgretty also pro-
duces code for pretty printing the models according to hintee grammar.

3.1 Specifying a Grammar

gretty requires a grammar specification as input. The grammar fggkin Ruby, using a
provided API, and may be annotated with layout-relatedrmittion. Some tools try to keep
different grammar concerns such as base syntax and laymautate; GPP (see Section 4), for
example, does this by having separate grammar and formattias for each non-terminal.
We chose not to do this igretty to avoid the extra work involved in maintaining multiple
rules per non-terminal.

Below is an example grammar specification, extracted fronasyet-unreleased tool in
which gretty is used for pretty printing C++ type specifiers; we are ushngtbol to con-
vert GCC-XML generated C++ interface descriptions intoféedent format.

Listing 3: A grammar specified in Ruby, uskisting 4: An approximate EBNF translation.
ing theqretty API.

crul e(:type_spec,
seq(basi c(:typenane),
opt (" ", :declarator)))
crul e(: ptr_decl arator,
seq("*", opt(:declarator)))
crul e(:ref _declarator,
squ"&?, opt (: declarator)))
crul e(:array_decl arator,
seqg(opt (:declarator),
“I[", opt(ident(:num)), "1"))
crul e(: func_decl arat or,
seq(" (", opt?:declaratorg, "),
“(", opt(:funcargs), ")"))
arul e(: funcargs,
conmal i st (:type_spec))
crul e(:cv_decl arator,
seqg(choi ce(namit(:const),
nan1it(:vo|ati|e;;,
opt(" ", :declarator)))
crul e(: name_decl ar at or,
i dent (: nane))
arul e(: decl ar at or,
basi c(: declarator))

type spec ::=
YivpeRAVE

(" " declarator)?
ptr _declarator ::=

"*" decl arator?
ref declarator ::=

"&" declarator?
array declarator ::=

decl arator?

[™ Num? "]1"

func_declarator ::=

"(" declarator? ")"

"(" funcargs? ")"
funcargs ::=

type_spec (", " type_spec)*
cv_declarator ::=

("const" |

"vol atile")

(" " declarator)?
nanme_decl arator ::=

NAVE

declarator ::=
ptr_decl arat or

gretty includes an API for dynamically generating a set of classeesponding to a gram-
mar specification. Eachbr ul e gets its own class, whose instances fggts (for adding
model objects) based on the named terms appearing on thiehagh side of the rule.
ar ul es do not get a class; instead, their fields are folded into togitaining rules. This is
an important feature, as many “off-the-shelf” grammarsités deep grammar trees; one can
achieve a shallower class hierarchy merely by judiciousipgiar ul e declarations instead
of cr ul e declarations.

| Task | CPU time (seconds) |

Grammar specification analysis (C++ grammr) 1.64
Class hierarchy generation (C++ grammar) 0.17
Model building (C++ declaration) 0.00
Pretty printing (C++ declaration, 10 times) 0.16

Table 1:qgretty performance measurements. Times listed are the averaderofiids, run on a PC

with a 2.80 GHz Pentium 4 processor and 1 GB of memory. The unedgprogram analyzed 210
grammar rules, generated 134 Ruby classes based on thebuiks model of a short C++ class
declaration (2 superclasses, two members), and printedetlaration 10 times. The analysis time
does not include parsing performed by the Ruby runtime ajrara startup.

gretty has a weakness in that it does not scale well to handle la@®argars. For one
thing, given a complex grammar it can be difficult to creat@aesponding class hierarchy
that—despite the complexity—provides a usable model mgldPI. Also,gretty is slow in
analyzing large grammars, as we noticed trying to use g/faaimplete C++ grammar. For
related performance figures, look at Table 1.

3.2 BuildingaModd

Immediately after a class hierarchy has been generatddnoes of the classes can be used
to form tree structures constituting models for pretty fnig. gretty-generated classes have
accessor methods for getting and setting child nodes, as/oulel expect.

Also, as described in Section 3dretty knows the concept of a field, and each field has what
we call abuilder settermethod, intended to make model building convenient. Dejpgnd
on the receiving field, a builder setter decides whetheréatera new node object. If so, it
determines the type of object to create, passes its argsreetite constructor of the object,
and then assigns the resulting object to the appropriatarios variable. If not, it simply
uses its argument as the value to assign. The method reherassigned object, and, if a
Ruby block is passed, also passes the object to the block.

Below we give an example of model building, emulating thel@®en example of Section 2.
In addition to the model building code, both the used gramspa&cification and the pro-
duced output are shown. Two alternative syntaxes for definiper son are included to
demonstrate how the use of Ruby blocks makes the tree steumftthe model clearer.

Listing 5: Grammar specification.

crul e(: xm _mar kup, opt(seplist(:person, nl)))

crul e(: person, choice(seq("<person>", nl, indent(one_or_nore(
seq(choi ce(: name, :phone), nl))), "</person>"), "<person/>"))

nfield [:nanme, :phone], :pname => : @i st

crul e(:name, seq("<name>", ident(:nane), "</ name>"))

cfield : nane
crul e(: phone, seq("<phone>", ident(:phone), "</phone>"))
cfield : phone

Listing 6: Model building code and a pretty printing request

nodel = ast:: Xml Mar kup. new

nodel . person { |b|] b.nanme "Jinf; b.phone "555-1234" }
b = nodel . person; b.nanme "Tim'; b.phone "555-4321"
CodePrinter:: pp(nodel)

Listing 7: The pretty printed output.
<per son>
<nane>Ji nx/ name>
<phone>555-1234</phone>

</ person>
<per son>

<nanme>Ti nx/ name>
<phone>555-4321</phone>
</ person>

An obvious problem withgretty is that the produced model building API has no visible
interface definition, forcing programmers to deduce it fitngrammar specificatiogretty
uses runtime reflection for code generation, and there ptiggs no option to generate API
documentation either.

At no point during or after model building dogsetty validate tree structure [12], nor is there
static typing support in Ruby that could be used to preveitéucode from mistakenly
placing a node into a context where the grammar does not @lde do not perceive this
as a big problem, since the preferred way for building modeisa builder setters, which
automatically create nodes of the correct type.

3.3 Pretty Printing a Model

gretty provides an API via which a model subtree may be pretty pdinRarameters can be
passed to choose an output stream, or to specify maximunwlgité, for instance. The im-
plementation makes use opainter methochamedgr etty_pri nt thatgretty includes in
all the classes it generates. When invoked, a generatetpniethod matches the receiver’s
instance data to the corresponding grammar rule to deterwivat to print.

During printing, an object we call printer visitor essentially walks the model depth-first,
passing itself to the printer method of each node; the primiethods are expected to print
themselves using the API provided by the visitor. For puesast flexibility, gretty allows

a hand-coded class to be included in a model class hierashgng as it implements pretty
printing in a compatible manner; in this case the right-hside of the corresponding gram-
mar rule need not be given in the grammar specification.

There is no support for having generated printer methods pamake use of any context
information, which makes it somewhat inconvenient to de#h\wanguage constructs that
print differently depending on context. Should contexibmmfation be required, one can
attempt to encode it in the grammar, or implement selectgrimethods manually.

4 Related Solutions

There are many tools [1, 7] capable of generating APIs foratpey on grammatically struc-
tured data, but we do not know of any tool apart frqretty designed to generate classes for
the specific purpose of pretty printing. With such specaian, semantics not relevant in
the context of pretty printing may be omitted, leading torsftomodel building code. One
just requires enough object semantics for correct coetoistrings for printing, and enough
structural information to enable formatting.

Some grammar-based tools [10, 11] restrict themselves-tmked structured context-free
grammars[11], which can—in generating classes—be mapped to a admgitance hier-
archy such that the presence of certain kind of non-termirsaimplicit in the inheritance
relationships, without concrete nodes for those non-teaisineeding to appear in ASTs.
For similar shallowing of models, gretty user must enhance the grammar with sufficient
annotationsgretty accepts all context-free grammars—the classes it gesetateot inherit
from each other, nor do they have a statically typed intexfalsey only form a hierarchy
through builder setters’ knowledge of what classes shoalichétantiated for which field.

GPP [8, 9] is one of the most powerful and generally appliegbktty-printing solutions
around, but it does not generate a language-specific APtégrammatic building of models.
The GPP toolset can handle a parse tree, an AST, or—indiresthurce-code text as input,
but if one has none of these, a solution similagtetty might be helpful for building suitable
input. GPP is part of the Stratego/XT [14] program transfation toolkit. There are a
number of others, such as DMS [2] and CodeWorker [4], andentiiese all are capable
of pretty printing, they are rather large systems, and migghbverkill to use just for that
purpose.gretty is not a reengineering tool, but it integrates easily witRuby applications
that need to generateewcode.

CodeDOM [5] provides a fixed API for building models of progratranslatable to any of
multiple supported languagegetty does not support multiple target languages for a single
model. While CodeDOM has better multi-language renderimgpsrt, its weaknesses are
that it does not provide elements to represent all languegtiifes of all target languages,
and that CodeDOM model building code gets quite verbqestty avoids these problems by
generating target language specific APIs designed for coeremodel building.

5 Conclusion

In this paper, we have explored the idea of programmaticahystructing models just for
pretty printing. We listed a number of situations where gjmng CPP might be warranted,
but any benefits must naturally be weighed against impleatienteffort.gretty is a tool that
can help reduce the effort required, as it is capable of godugrammar-specific class hi-
erarchies and associated pretty-printing routines. @nilost grammar-dependent software,
it even supports languages defined at runtime; a new granpeaifisation can be created
and processed at any time, and the resulting classes carn imtgoan anonymous module to
allow unneeded definitions to be discarded.

Aside from implementation effort, one must also consideethbr it is possible to achieve
convenient model building in a given case. Either the mod#dlimg language or the printed
language might make it hard to do gpetty models are built in Ruby, whose syntax seemed
quite acceptable for the task, but we would have liked a laggufeature similar to the
JavaScriptM t h statement for specifying the default receiver for a set aioe: calls.

For a friendly model building API, one probably requires noeable naming and a class
hierarchy of reasonable deptiretty’s grammar specification language can assist in making
class hierarchies shallower than grammar trees. Namingsdairly naturally for some
languages; in our XML example, method names directly mapetment names in the XML
document schema. There is no immediately obvious way to mapl@&guage constructs to
method names, however, as we found in trying to define a C+grano model building API.

gretty is available for download [13], along with another libraglledcodepri nt. The
latter provides functionality for printing and formattitext, offering control over indentation
and line breaking, for instance, agcetty depends on it for low-level formatting tasks. The
reader should note that the present bad performancgettfy excludes its use from many
applications. It would be possible to drastically improwsfprmance, at least by switching
to compile-time code generation, but this is left for futurerk.

Acknowledgements

We thank Ken Rimey and the anonymous referees for consteuctiticism on earlier revi-
sions of this paper, and Pekka Kanerva for feedback oqridtty documentation. We grate-
fully acknowledge that this work has been funded under EBA0EA S4ALL (Services for
All).

References

[1] ANTLR. http://ww. antlr.org/.

[2] I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program tfansations for practical scalable
software evolution. IrProceedings of the International Conference on Softwargir&gering
IEEE Press, 2004.

[3] Builder for Markup.htt p: // bui | der. rubyforge. org/.
[4] CodeWorker.htt p://codeworker.free.fr/.

[5] .NET framework developer’s guide: Generating and cdimgisource code dynamically in mul-
tiple languagesht t p: / / msdn. m cr osoft. cont .

[6] Jack Herrington.Code Generation in ActiorManning, 2003.

[7] H. A. de Jong and P. A. Olivier. Generation of abstractgpamming interfaces from syntax
definitions. Journal of Logic and Algebraic Programming (JLAPR:35-61, April-May 2004.
Issues 1-2.

[8] Merijn de Jonge. A pretty-printer for every occasion. Rroceedings of the 2nd International
Symposium on Constructing Software Engineering Ta@tdlongong, Australia, 2000.

[9] Merijn de Jonge. Pretty-printing for software reengiring. InProceedings of International
Conference on Software Maintenance (ICSM 20@2ges 550-559. IEEE Computer Society
Press, October 2002.

[10] maketea theoryht t p: / / www. phpconpi | er. or g/ doc/ maket eat heory. ht m .

[11] The metaprogramming system — reference manual. TeaghRieport MIA 91-14, Mjglner In-
formatics, February 2002.

[12] Terence Parr. Translators should use tree gramrhaitsp: / / www. ant | r. org/ articl e/
1100569809276/ use. tree. granmars. t m , November 2004.

[13] qgretty.http://pdis.hiit.fi/s4all/downl oad/gretty/.

[14] Eelco Visser. Program transformation with Strateg/Rules, strategies, tools, and systems
in StrategoXT-0.9. IrDomain-Specific Program Generatiomlume 3016 ol ecture Notes in
Computer Scienggpages 216—-238. Springer-Verlag, June 2004.

