
A Revocation, Validation and Authentication Protocol for
SPKI Based Delegation Systems ∗

Yki Kortesniemi
Helsinki University of Technology,
Department of Computer Science,
FIN-02015 HUT, Espoo, Finland

yki.kortesniemi@hut.fi

Tero Hasu
Helsinki University of Technology,
Department of Computer Science,
FIN-02015 HUT, Espoo, Finland

tero.hasu@hut.fi

Jonna Särs
Nixu Oy

Mäkelänkatu 91
FIN-00610 Helsinki, Finland

jonna.sars@nixu.fi

Abstract

In distributed systems, the access control mechanism
is often modeled after stand-alone solutions, such as
ACLs. Such arrangement, however, is not ideal as the
system may be mirrored around the world and main-
taining the ACLs becomes a problem. A new approach
to this problem is using authorisation certificates to
control access to resources. This diminishes manage-
ment overhead, but introduces problems with revoca-
tion.
A related problem is enforcing quotas in distributed

systems. Traditionally, authorisation certificates just
limit the usage interval, but not the volume. In this
paper, we discuss these problems in SPKI based del-
egation systems and propose some refinements to the
SPKI specification. In particular, we address the prob-
lem of limiting the usage of resources to which a cer-
tificate grants access. Finally, we develop a protocol
for solving these problems using online revocation and
validation.

1 Introduction

Interactions between entities like people, organisations
and software often rely on trust. If we trust someone or
something, we are willing to grant them extra rights,
and, similarly, we might receive some ourselves, if they
trust us. However, to convince others that someone

∗This work was partly funded by the TeSSA research project
at Helsinki University of Technology under a grant from Tekes.

trusts us and has granted us the rights, we have to be
able to provide them with some proof of this trust. To
take an example, we might have a credit account in
a financing company, which allows us to pay for our
purchases and later settle our bill with the financing
company. Here, the company trusts us to take care of
the bill. However, to convince the merchant, we need
proof this trust, which is expressed in the form of a
card. The possession of a card assigned to the bearer
is considered an assurance of this trust.
The use of a card was a good choice for on-the-place

purchases as it made it relatively difficult for the major-
ity of people to forge these expressions of trust. How-
ever, the situation is completely different when shop-
ping over the Internet, or any other telecommunica-
tions line, where it is impossible to verify the posses-
sion of the card. Then, the right to purchase is granted
solely based on the knowledge of the contents of the
card, which makes it too easy to just copy this infor-
mation and misuse it.
A more secure way would be to express the trust

in the form of a certificate. A certificate is a digital
document, where a signature is used to guarantee the
unmodifiability of the information within. Certificates
have traditionally appeared in two major types: iden-
tity certificates, where a trusted third-party testifies
his belief that a particular public key belongs to a cer-
tain individual or other entity, and authorisation cer-
tificates, which grant some rights to the specified public
key. The use of the right can be controlled by requir-
ing the possession of the corresponding private key. A
credit card can now relatively easily be represented as

1 of 17

an authorisation certificate. Furthermore, the posses-
sion of this certificate alone will not grant any rights;
the user of the certificate also has to prove the posses-
sion of the private key.

All of this can be accomplished with existing autho-
risation certificates, like the SPKI [6] certificates cur-
rently being standardised by the IETF. However, to
solve anything other than the most trivial problems,
the certificates alone will not suffice – we need other
supporting mechanisms. First, it is necessary to have
a mechanism to revoke a certificate in case of misuse,
change of situation or if the private key is compromised.
Second, we might want to impose some limits on the
use of a certificate, like a monthly limit on purchases.
This can not be accomplished with the certificate alone,
additional online checking is necessary. Finally, we re-
quire a mechanism to authenticate the user of a certifi-
cate to make sure they possess the private key.

The revocation and validation problems have been
discussed in the SPKI theory specification, but the
structural specification leaves many of the details as
well as the questions regarding a suitable protocol to
accomplish these tasks completely unanswered. In this
paper, we discuss the problems of revocation and vali-
dation and propose some refinements to the SPKI spec-
ification. Further, we present a protocol for online vali-
dation and revocation. As the protocol requires a com-
munications channel that can guarantee integrity and
authentication, we have based it on the ISAKMP [11]
framework. ISAKMP is meant for providing a secure
channel for key agreement, but can easily be extended
to support other negotiations as well. It should be
noted that some of the communication does not re-
quire ISAKMP and can use other, lighter protocols, as
well, to reduce the overhead.

The rest of this paper is organised as follows: in Sec-
tion 2 we explore these problems in detail and intro-
duce our example case: the application of certificates as
a replacement for credit cards. In Section 3 we go over
different solutions to revocation and validation and es-
tablish the criteria for a good solution. In Section 4 we
introduce the SPKI certificates, discuss their solution
to revocation and validation, and finally suggest some
refinements. In Section 5 we introduce the ISAKMP
protocol, which we use as part of our solution. In Sec-
tion 6 we detail the design rationale. In Section 7 we
present our solution to the presented problems in the
form of a protocol. Section 8 gives an example of the
use of this protocol, Section 9 compares the solution
to the criteria introduced and Section 10 discusses the
limitations of these solutions and suggests further work.
Finally, Section 11 presents our conclusions.

2 Problems in detail

In our example, we wanted to purchase something from
the merchant over the Internet. In this case the various
parties have the following interests during the transac-
tion:

• The merchant is interested in

– receiving the payment for his product or ser-
vice

• We, on the other hand, want to make sure that

– the payment is indeed received by the mer-
chant and not by an imposter

– the merchant is not able to charge us more
than once

• We could also be interested in

– hiding our identity from the merchant to
avoid receiving further publicity material or
because we do not want the merchant to keep
a record of our purchases

• The credit company (or anyone else, who grants
or delegates rights) might be interested in

– controlling our purchases by imposing a
monthly limit on our credit card

– being able to cancel the card, should we mis-
use it or should the card fall in wrong hands

Now, how can these problems be solved using certifi-
cates and what new problems does this introduce?
The information contained in a credit card can eas-

ily be included in a certificate. However, not all the
information is necessary if certificates are used. Credit
cards normally have the name of the owner printed on
the card to facilitate the verification that the card is
indeed in the possession of its rightful owner. Certifi-
cates like the SPKI authorisation certificates, on the
other hand, do not require the use of a name, because
the use of a public/private key pair can accomplish the
same end even better. An added bonus is that now the
certificate only contains a public key, which does not
identify the user, thus improving privacy. In fact, it is
possible to use a different public key for every certifi-
cate, making it virtually impossible for the merchant to
identify the user as long as the certificate is acquired
from a source that does not reveal this information.
The credit card company, however, has to know the
identity of the holder of the card to be able to bill him.

2 of 17

In this respect, there is no change from the current sit-
uation and the credit company is still able to practice
some data mining.

One additional advantage of a certificate compared
to a credit card is delegation. It is possible to grant
someone else a part or all of our own rights without
giving away our own proof to these rights. An example
could be that we want to allow our offspring to use our
credit account. Now, with a traditional credit card, it
would be possible (but usually not allowed) to loan our
own card, thus losing control over it for a while. Fur-
ther, if the offspring misuses our card, it is not possible
to identify him as the guilty one. Another solution is to
acquire a parallel card, but this requires a visit to the
bank and has several limitations. If, however, the off-
spring uses his own certificate, which we delegated, it
is possible to identify who has actually used the credit.
And finally, the use of delegation does not require the
credit company to be involved; we can use it at our
convenience.

A more complicated, yet more realistic example could
be that we want to allow our offspring to use our credit
account, but only to a certain limit. A certificate
alone can not accomplish this, as the certificate can
not contain any information about its usage history.
The certificate can not be modified to signify that it
has been used and the information about the use can
not be stored separately, as this additional informa-
tion might “accidentally” get lost, should the user need
more credit. One solution is to use an online server that
keeps track of the amount of purchases. The certificate
would then contain a reference to an obligatory online
check that grants or denies every purchase based on the
accumulated total. The use of an online server deviates
from the basic idea that certificates are selfcontained
and that they can be used without additional infor-
mation. However, in many situations it is unrealistic
to expect that certificates can be used without some
additional control – certificates merely grant the right
to use some resource, but used alone offer no solution
(other than time periods) to control the volume of us-
age. Accepting the use of online validation opens up
new possibilites in this area.

The choice of the validation server is up to the is-
suer of the certificate, and should be made so that the
server understands the concept of limits. There could
be different kinds of servers, some with more advanced
capabilities like limit checking. Others, with less capa-
bilities, can take care of simple problems, like verifying
whether a certificate has been revoked or not. Revo-
cation could result for instance from the compromise
of the private key controlling the use of the certificate.

Again, this feature requires that a revocation check is
included in the certificate.
The online checking system is complicated because

the entity verifying the certificate chain with online
checks is usually the originator of the chain. The prob-
lem is that not all online checks can be allowed to be
performed by everyone. With revocation, it is plausible
that anyone can be allowed to verify whether a particu-
lar certificate has been revoked or not. However, when
we talk about a limit type of check (a certain amount
every month, a certain number of times, etc.), every
successful validation also consumes part or all of the
right to the limited resource. Therefore, only a party,
to whom this limited use of resource has been granted
either directly or through delegation, can be regarded
to have the right to make these validation requests.
Otherwise it would be possible for a malicious neigh-
bour to use all of the limit (but not the resource itself)
without the rightful parties’ consent. Now, the verifier,
being the originator of the chain, is neither the receiver
of the limited resource nor his descendant. Therefore,
for the validation to succeed, the user of the resource
also has to delegate the right to make the validation
check to the verifier using a validation certificate.
The remaining problem is, how to guarantee that the

merchant receives one and only one payment. To ac-
complish this, the user of the credit card would delegate
the merchant the right to charge his account by a spec-
ified amount and control the number of uses with an
online check. This online check could be directed to the
user’s own terminal, which would eventually show that
the merchant is requesting to use his right. The ter-
minal could then validate this request once, and later
deny any further validation attempts.
The merchant could, after having received the pay-

ment certificate from the user, contact the credit com-
pany, which can verify the certificate chain and, should
the chain prove valid, credit the merchant’s account.
If the chain is not valid, the verifier can notify the
merchant, which can then deny delivering the service.
The merchant, on the other hand, can not deny hav-
ing received the payment, and will therefore be caught,
should he try to deny the service on the pretense of not
being paid.
In all of these validation situations, it is paramount

that all the parties in the negotiations are reliably
authenticated to avoid any possible impersonations.
First, it is important to verify that the validation server
is indeed the intended server. This can be achieved by
incorporating the server’s public key in the validation
part of the certificate and then using a suitable authen-
tication mechanism. Further, the server has to verify
that the party requesting the validation has been au-

3 of 17

thorised to perform it by verifying the certificate chain.
Also, the merchant and credit card company have to
authenticate each other to make sure the transaction
happens to the benefit of the right parties.
The traditional SPKI view has been that the revoca-

tion information is fetched by the prover (in this case,
the merchant or client). However, it may be impossi-
ble to equip clients having very limited computing and
storage capabilities with the logic needed to acquire
certificate chains. One solution would be that the veri-
fier could also take care of completing the chains. The
downside is that the verifier could face excessive loads,
even denial of service attacks. Therefore, the verifier al-
ways has the right to refuse from anything other than
verifying the chain and performing those checks the
prover can not take care of. Another solution would
be to introduce third party services for resolving the
chains.
As a final point, it should be noted that arranging for

reliable and efficient certificate revocation is difficult,
no matter how good the protocols used are. Whenever
possible, revocation should, therefore, be avoided al-
together, by setting the validity periods of certificates
small enough, so that if a potential problem with a cer-
tificate is noticed, any damages sustained by the time
the certificate expires cannot climb too high. Revo-
cation can be further obviated by choosing the policy
of the verifier suitably. For example, the verifier could
maintain a list of “problematic” entities, whose appear-
ance in a certificate chain would cause the verifier not
to accept the chain regardless of its validity.

3 Certificate revocation and val-
idation

Certificates are designed to be self-contained, so that
only a minimum amount of context information is
needed to process the certificate. However, as men-
tioned before, the certificates cannot be completely in-
dependent. The trust relationships may change over
time, while the information on the certificates still re-
flects the old circumstances. Thus, certificates may not
live forever.
Revocation of certificates is always difficult, and es-

pecially so in systems like SPKI, where certificates are
delegated among autonomous users for which there ex-
ists no centralised authority that could restrict del-
egation. Furthermore, in decentralised systems, tra-
ditional “operating system” style mechanisms such as
simple deletion of the certificate [21] cannot be used to
implement revocation, because there may exist multi-
ple copies that we do not know of. [9]

Certificate revocation is intimately tied to the va-
lidity period and permission granted by the certificate.
One key idea has been that certificates are only valid for
a reasonably short period or grant a limited permission.
Then, the loss would be limited, should the private key
be compromised, and other precautions, like revoca-
tion, would be less critical. [19] Maybe they could even
be omitted. This would be desirable, as a revocation
check every time a certificate is used can amount to sig-
nificant traffic. If, however, it is impractical to use very
“short” certificates, revocation can become necessary.
Different revocation mechanisms can be evaluated

according to certain properties: timeliness, third party
side effects, reversal of revocation, and granularity. Of
these properties, granularity and timeliness are the
most important. [1] In addition, some revocation mech-
anisms protect the ability to revoke certificates so that
only the issuer or the certificate owner has a right to
revoke it. [4]
Further design criteria for revocation could be that

the revocation mechanism should provide fail safety
and availability. Also, it should be recent, adjustable
and bounded in terms of revocation delays and con-
tained so that compromises in the revocation do not
allow further compromises of the system. [20]

3.1 Validity periods
The basic method for limiting certificate validity, which
most certificate types have in common, are validity pe-
riod dates. They are often called the “not before” date
and the “not after” date.
Validity periods are easy and efficient to check, even

in an offline environment, but they also have draw-
backs. The need to revoke a certificate may arise long
before the certificate was originally planned to become
outdated. The longer life span the certificate has, the
longer is the potential period during which the certifi-
cate is spreading false information. Thus, if a validity
period is used as the only validation mechanism in a
certificate, the period should be specified as short as
possible. [19]
If certificates with very short validity periods are

used, the management overhead might easily grow too
large. To reduce the overhead, the certificates could in-
dicate a location from where a replacement certificate
can be fetched. If the information in the certificate is
still valid, the replacement can be issued as a standard
procedure.

3.2 Certificate Revocation Lists
CRLs are the most common revocation method used in
combination with validity periods. A CRL is a signed

4 of 17

list issued by the Certificate Issuer identifying all re-
voked certificates by their serial numbers or some other
reliable identification. If the certificate is not on the
list, it is assumed valid. The list includes a time stamp
or a validity period. The CRLs are published on a pe-
riodic basis, even if there are no changes, to prevent
replaying old CRLs. [14]
The main problem with CRLs is that they only

shorten the period of possibly false information taken
as correct, but they do not eliminate it. Further more,
the verifier has no control over how often the CRL is
updated, and thus cannot affect the amount of risk it
is accepting [16]. The CRLs also may get very long,
requiring a lot of bandwidth, a large storage capacity
and excessive processing.
There have been several proposals for improving the

performance of the CRLs [14]. Some of the most ac-
cepted are using short validity periods for certificates
in the first place, thus shortening the time the certifi-
cates spend on the CRL, and using Delta-CRLs that
only include the changes since last update instead of
sending the complete list every time. To complicate
matters, some techniques to improve the performance
have been patented. [12]
Essentially, CRLs are a memory from the age of man-

ually verifying credit cards. Today, when even refriger-
ators are going online, it could be argued that a more
online-oriented solution could be used.

3.3 Certificate Revocation Trees
One proposed solution to the revocation problem is
called a Certificate Revocation Tree (CRT) [14]. A
CRT issuer creates a group of statements of the type
“If the CA is X and the serial number is between Y and
Z, the certificate is valid”. Together, the group speci-
fies the status of any certificate known by the issuer.
These statements are placed as leafs in a binary tree
structure and the tree nodes are filled with hash val-
ues calculated from the child nodes. Finally, the root
node value is signed by the issuer to provide proof of
integrity.
To check the validity of a certificate, the verifier needs

to check the appropriate statement, and verify the asso-
ciated hash values and the root node’s signature. The
other statements and hash values do not need to be
transfered nor stored. However, the tree must be com-
pletely rebuilt and signed every time the status of any
single certificate changes.

3.4 Online validation
If all the parties can be assumed to stay online, the
most simple, efficient and timely way for the verifier to

check revocation is to directly ask the issuer or a valid-
ity server about the certificate in question. The issuer
or validity server may respond with a simple boolean
value together with a timestamp and a signature, or the
reply may also include other information such as a time
period when no further proof of validity is required.
An alternative solution based on regularly sent af-

firmation tokens has been proposed [7]. If this token
is not received in time, the certificate is taken as hav-
ing been revoked. However, this approach fails to con-
sider communications disruptions. Also, it requires a
global clock, which is not a practical notion in a world
wide distributed environment. Rivest comes to a simi-
lar idea of using positive affirmations in his analysis of
CRL. [16]
Although the online check seems very simple, it is

flexible enough to allow for a wide variety of validation
policies. The validation server could simply say the
certificate is valid if it has not been revoked, but it
could also keep track of the context of how many times
and how the user has used the certificate, and make
the validation decisions based on the context.
Online validation is simple for the verifier, but

requires more processing power from the validation
server, who must create a signature for each reply.
The general opinion seems to be moving from CRLs

to online checks. The X.509 specification has origi-
nally relied on CRLs. However, there is a draft that
defines an online status protocol similar to the one we
are proposing. [13]

4 SPKI certificates, validation
and revocation

Simple Public Key Infrastructure (SPKI) is a proposal
for a Public Key Infrastructure (PKI) that would be
more flexible than X.509 and free from the requirement
of a global, trusted Certification Authority hierarchy.
It has adopted many ideas from the SDSI [18, 17] and
PolicyMaker [3] prototype systems. IETF is developing
SPKI, and so far it has reached the experimental status.
SPKI was designed to support certificate based au-

thorisation. It can be used to certify identity, as well,
but unlike X.509 and other name oriented systems,
SPKI uses cryptographic keys to represent identities.
To facilitate certificate management by humans, SPKI
has local name spaces that can be linked together.
SPKI authorisation certificates [5], like any authori-

sation certificates, are signed statements of authorisa-
tion. The certificate can be abstracted into a signed
quintuple (I, S,D,A, V) where

5 of 17

I is the Issuer’s (signer’s) public key, or a secure hash
of the public key,

S is the Subject of the certificate, typically a public
key, a secure hash of a public key, a name, or a
secure hash of some object,

D is a Delegation bit,

A is the Authorisation field, describing what access
rights the Issuer delegates to the Subject,

V is a Validation field, decscribing the conditions
(such as a time range) under which the certificate
can be considered valid.

The meaning of an SPKI authorisation certificate can
be stated as follows:
Based on the assumption that I has the control over

the rights or other information described in A, I grants
S the rights/property A whenever V is true. Further-
more, if D is true and S is not a hash of an object, S
may further delegate A or any subset of it.

4.1 SPKI validity conditions
SPKI certificates, like most other certificate types, have
a validity period. In SPKI, the validity period defini-
tion consists of two parts:
<not-before>:: "(" "not-before" <date> ")"

;
<not-after>:: "(" "not-after" <date> ")" ;
Both parts are optional and if either one is missing,

the certificate is assumed to be valid for all time in that
direction. There is an additional type of validity pe-
riod called “now”, which has a length of 0. It can only
be the result of an online check and is interpreted to
mean that the certificate is valid the moment the val-
idation request was made, but it states nothing about
the future. If the same certificate is used repeatedly,
the online check has to be repeated, as well.
In addition to the validity period, SPKI includes

three online validity checks: CRLs, revalidations and
one-time checks. Furthermore, the SPKI theory [6] de-
fines other online checks, but they do not appear in the
structure drafts [5], yet. Later in this paper we discuss
and propose structures and reply formats for some of
them.
To facilitate the desision of whether or not the cer-

tificate is valid at a particular instance of time, all the
different validity conditions end up being converted to
validity periods as specified above. So, validating a
certificate is relatively straightforward: check that the
validity period stated in the certificate as well as the on-
line checks (converted to validity periods) are all valid

at the time of use and the certificate as a whole is valid
and, therefore, grants the included permission.

4.2 SPKI online checks

All the online checks are defind using the following for-
mat:
<online-test>:: "(" "online" <online-type>

<uris> <principal>
<s-part>* ")" ;

where <online-type> can be crl, reval or
one-time. The <uris> specify one or more URIs (Uni-
form Resource Identifier [2]) that can be used to request
revalidation. The <s-part> is optional and may con-
tain parameters to be used in the online check.
SPKI includes both traditional and delta CRLs in its

specification. These must also be signed by the afore-
mentioned principal. The CRL formats are specified
below.
<crl>:: "(" "crl" <version>? "("

"canceled" <hash>* ")"
<not-before>? <not-after>? ")"
;

<delta-crl>:: "(" "delta-crl" <version>?
<hash-of-crl> "(" "canceled"
<hash>* ")" <not-before>?
<not-after>? ")" ;

Another way of getting assurance that the certificate
is still valid is to ask for a “bill of health” which testi-
fies that the certificate can be considered valid for the
stated period. The SPKI definitions specify the reply
format:
<reval>:: "(" "reval" <version>? "("

"cert" <hash> ")" <not-before>?
<not-after>? ")" ;

The reply identifies the original certificate in the hash
and gives a confirmed validity period for that certifi-
cate. The reply must be signed with the key given as
<principal> in the original certificate.
The third option is that the verifier of a certificate

can just ask the issuer directly about the certificate’s
validity every time the certificate is used. In SPKI, this
is called one-time validation, as the validation proof is
valid one time only, at the moment the reply is received.
The corresponding reply message is:
<reval>:: "(" "reval" <version>? "("

"cert" <hash> ")" "(" "one-time"
<nonce> ")" ")";

Again, the hash must correspond to the original cer-
tificate, and the reply message must be signed by the
principal given in the certificate.

6 of 17

4.3 Proposed changes to SPKI
In light of our earlier comments, we propose a number
of changes to the SPKI structure.

Proposition 4.1 Deprecate crl.

In the SPKI context, CRLs are an outdated, imprac-
tical technology. They are at their best in situations
where there are only few certificate issuers and it is thus
possible to prefetch most or all relevant CRLs and then
work offline. But in the SPKI model there are possi-
bly a huge number of certificate issuers and it is not
possible to predict, which CRLs are going to be used,
so the online connection is still required. Furthermore,
to validate a single certificate using CRLs, it is neces-
sary to download a potentially long list of information,
most of which is useless unless other certificates from
the same issuer are validated in the near future.
A better way to manage revocation is to use reval,

which provides only the necessary information about
the certificate in question and nothing more. However,
even better is to use short lived certificates and avoid
online checks altogether.

Proposition 4.2 Introduce online test query formats.

<crl-query>:: "(" "test" <version>? "crl"
"forbid-delta"? ")" ;

<reval-query>:: "(" "test" <version>?
"reval" <cert> ")" ;

<one-time-query>:: "(" "test" <version>?
"one-time" <cert>
<nonce> ")" ;

<valid-basic>:: <valid-date> |
<valid-dates> ;

<valid-date>:: <not-before> | <not-after> ;
<valid-dates>:: <not-before> <not-after> ;

Proposition 4.3 Introduce negative online test reply
formats for reval and one-time.

The SPKI specification currently defines online test
reply formats for tests of type crl, reval and
one-time. However, the definitions for reval and
one-time assume positive replies. To make it possi-
ble for a verifier to prove that a test failed, negative
reply formats should also be defined. We propose the
following reply formats, which support both positive
and negative replies to reval and one-time queries,
respectively.
<reval-reply>:: "(" "reval" <version>?

"(" "cert" <hash> ")"
"invalid"? <valid-basic>
")" ;

<one-time-reply>:: "(" "reval" <version>?
"(" "cert" <hash>
")" "invalid"? "("
"one-time" <nonce> ")"
")" ;

To allow use as proof, all replies must be digitally
signed by the validator.

Proposition 4.4 Introduce renew.

The SPKI theory document states that SPKI has
a mechanism to fetch a sequel to the current (short
lived) certificate; this provides an alternative way of
controlling revocation. As the specification itself does
not currently define the format for this kind of online
check or the related messages, we will propose such
formats here.
<renew-test>:: "(" "online" "renew" <uris>

<principal> <s-part>* ")" ;
<renew-query>:: "(" "test" <version>?

"renew" <cert> ")" ;
<renew-reply>:: "(" "renew" <version>?

<cert> ")" ;
<renew-reply>:: "(" "renew" <version>?

"(" "cert" <hash> ")"
<valid-basic>? ")" ;

The former <renew-reply> is a positive reply, and
contains the new certificate. The latter one is a nega-
tive reply, and contains the hash of the certificate for
which an extension certificate was asked for. The valid-
ity period states a period of time during which renewal
requests will be denied.

Proposition 4.5 Introduce limit.

Online tests guarding limited resources should be dis-
tinguished from other online tests and we propose a
new type of an online check called limit. It is similar
to one-time, but a verifier may not perform a limit
check without proof of its right to ask about the valid-
ity of the certificate containing the test. Our proposals
for the syntax of the test and the related messages are
below.
<limit-test>:: "(" "online" "limit" <uris>

<principal> <s-part>* ")" ;
<limit-query>:: "(" "test" <version>?

"limit" <cert> <request>?
<chain> ")" ;

where <cert> is the certificate whose online test(s)
are to be made, <request> specifies the amount of re-
sources requested, and <chain> proves that the verifier
is entitled to ask about the validity of the certificate.
The last certificate of the chain must be the validation
certificate, which contains the <nonce> that is to be
included in the reply to the query.

7 of 17

<request>:: "(" "request" <s-part> ")" ;
<chain>:: "(" "chain" <cert>+ ")" ;
<limit-reply>:: "(" "limit" <version>?

"(" "cert" <hash> ")"
"invalid"? "(" "one-time"
<nonce> ")" <context> ")" ;

<context>:: "(" "context" <hash> ")" ;
where <hash> is a hash of the concatenation of the

canonical forms of <request> and <chain>.

5 ISAKMP

The Internet Security Association and Key Manage-
ment Protocol (ISAKMP) [11] has been designed to
be a framework for securely implementing key and se-
curity association agreement negotiations. A security
association (SA) is a simplex communication channel,
which provides integrity, authentication and possibly
confidentiality. The actual channel can be implemented
using various techniques, like IPSec, but the role of
the management protocol is to agree on the parame-
ters used for the channel, such as the algorithms used.
To provide high bandwith two-way communications, at
least two different SAs (one in each direction) have to
be agreed on.
ISAKMP provides the building blocks for defining

the actual negotiation protocols by defining the types
of information that can be passed between the negoti-
ating parties and by defining a two-phase process for
the negotiation. In this model, the first phase is used to
agree on an internal SA, which is then used to protect
the possibly numerous phase two negotiations. This
makes the phase two negotiations much more simple
as they do not have to worry about securing their com-
munication. The phase two negotiations then agree on
the parameters for the actual communications. These
can include negotiations on an SA for the communica-
tion as well as the keys used.
A negotiation (be it a phase one or phase two nego-

tiation) is described in the ISAKMP world as an ex-
change. The exchange defines the order and contents
of the messages sent between parties. The ISAKMP
RFC defines some exchanges, but the actual protocols
are free to define their own.
One example of a key agreement protocol built

on top of ISAKMP is the Internet Key Exchange
(IKE) [8], which uses techniques from the Oakley [15]
and SKEME [10] RFCs to define a key agreement pro-
tocol for the Internet environment. It uses two of the
ISAKMP exchanges for its phase one negotiation and
defines its own phase two negotiation.

In our case, we use the ISAKMP to define the nego-
tiation protocols for validating the certificates and for
using the rights granted by the certificate. ISAKMP is
used to provide integrity and authentication and pos-
sibly confidentiality by using the standard ISAKMP
phase one exchanges to create a suitable SA. We then
define new phase two exchanges for the negotiations.
Even though our protocols are not key agreement

nor SA negotiations, the use of ISAKMP can be jus-
tified because they share many similar characteristics.
Further, the use of ISAKMP makes the protocol more
secure as ISAKMP takes care of most of the security
problems. And finally, this makes the implementation
of the protocol easier, as most of the protocol function-
ality is already implemented in ISAKMP.
The actual communications in our protocol may in-

volve three or more parties, so a three-party protocol
could possibly be even more suitable than ISAKMP.
However, the evaluation of this option is left to future
work.

6 Background for the protocol
In this section we go over some of the essential problems
in implementing a validation protocol.

6.1 The SPKI reality

For some applications revocation is essential. In SPKI,
revocation and online validation is possible only if it
has been defined in the certificate. The format of an
online check definition was already described in Sec-
tion 4.2 for those online tests currently included in the
SPKI specification. The goal for our protocol was to
support them, as well as the tests proposed in Sec-
tion 4.3.
An online check expression must contain one or more

URIs. The purpose of an URI is to define the proto-
col used to perform the verification, and to identify the
entity or resource that should be consulted using the
protocol. Only one of the URIs should be chosen and
used during validation, and the others should be con-
sidered as backups in case the initially chosen entity
or resource cannot be reached. The <principal> field
is used to authenticate the server; it typically contains
the public key of the server. The <s-part>* part of an
online check definition may contain additional informa-
tion that only needs to be understood by the validation
server. Depending on the type of URI, the same infor-
mation could also be contained in the URI itself. (This
is true for an HTTP URL, at least.)
Once a verifier receives a certificate chain, it must

first check to see if the chain is valid, apart from the

8 of 17

online checks. It may be that only the verifier is able
to understand the tags in the certificates. Only if the
chain is otherwise valid should the verifier proceed to
make the online checks.

6.2 Authenticating the parties involved

A successful validation depends on several things.
First, we have to be able to authenticate the partic-
ipants or the source of information reliably. The SPKI
specification does not give details regarding connect-
ing to online servers or transmitting messages between
them. One way to solve the problem is to use ISAKMP
to authenticate the parties. The relevant public keys
can be found in the certificate chain: the verifier is
the originator of the chain and the possible validator
is identified in the validation part of the certificate re-
quiring online validation. As both parties know each
others’ public keys and have their own private keys,
authentication and possible session key exchange can
be arranged. Our protocol requires authenticity and
integrity from the security association; other qualities,
such as confidentiality are optional, and are left for ap-
plication specific policies to decide.
It should be noted that it is not necessary to au-

thenticate the parties in every transaction type. For
instance, while fetching a CRL, it is not necessary to
authenticate the parties involved as long as the CRL is
correctly signed. In such cases, ISAKMP can be lim-
ited to first part of the protocol, namely the service
request.

6.3 Authorising the limit validations

The second problem is related to the right to make
some validation requests: validity queries of type crl,
reval, one-time and renew do not diminish any lim-
ited resource and can therefore be made by anyone. A
limit-type validation, however, will use some or all of
the resource by approving the validation, and therefore
the access to such validation has to be limited to only
those who are able to use the related resource them-
selves. In practice, this means those entities, to whom
the limited right was granted, and all other entities, to
whom this right was further delegated.
As the verifier is not a receiver of the right, but rather

the originator of the chain, he must not be allowed to
make any limit-type checks in the chain without ex-
plicit permission. The user of the resource, i.e. the
final receiver in the chain, has to authorise the verifier
to validate the certificates by issuing a special valida-
tion certificate for this particular use of this particular
chain. In our example, the merchant would authorise

the credit card company to make all the necessary on-
line checks.

6.4 Auditing the validations
All of the online checks in a certificate chain must pass;
otherwise the certificate chain is not valid. It is in the
chain verifier’s best interest that it handles the verifica-
tion correctly, as it is usually guarding access to its own
resource. In any case, the verifier should be the one re-
sponsible for properly verifying the chain. It could be
argued that the verifier must also be able to prove that
it verified a chain according to the rules in case some
in the chain denies having authorised the transaction
by having revoked one or more certificates. However,
the need for proofs depend on the nature of the service
and is therefore a policy decision.
It is possible for the verifier to have proof if it stores

the verified chain, as well as the signed replies sent by
the validation servers mentioned in the online checks.
Now, the verifier should only approve a chain when
it has such a signed statement for each of the online
checks in the chain.

6.5 Validation certificates
A validation certificate must contain at least all the
fields shown in certificate cvalidation.

cvalidation = (cert (issuer Kissuer)
(subject Ksubject) (tag (validate
hash(Schain)) (nonce vnonce)) (not-after
Texpiration))

(1)

where Kissuer is the public key of an entity autho-
rised to issue a permission to validate certificate chain
Schain, Ksubject is the public key of an entity that
wishes to check the validity of Schain (i.e. the verifier).
vnonce should be a unique value in the sense that after
the validation server has seen a certificate that has a
particular vnonce value, it will not accept another cer-
tificate with the same value until after the expiration
time Texpiration of the first certificate has been reached.
Texpiration should be chosen to provide sufficient time
for validation, but nothing more.

6.6 Avoiding unnecessary checks
A possibility for a certificate to get unnecessarily used
is when there are multiple limit-type online checks in a
chain. If these limit checks are performed sequentially,
it could be that some checks pass, before one of the
checks fails thus wasting the limits checked so far. Now,
all unlimited checks can then be performed first, and
only after that should any of the limited-use checks be
made.

9 of 17

In our case, we have used the refined SPKI speci-
fication, which gives us new options. In order to re-
duce the likelihood of wasted checks, we have decided
to use two-phase negotiation for limit-type validations
and one-phase negotiation for others. Furthermore, the
one-phase negotiations can be performed without an
ISAKMP connection as the integrity of the information
is not at risk. The two-phase negotiations, however, ei-
ther require ISAKMP or signed requests and replies.
One possibility of unnecessary use of limited-use

checks still remains. Any network failures during the
second phase might cause the transaction to fail when it
is already partially complete. As online checks cannot
be cancelled, there is no possibility of rolling back the
transaction, and those online checks already commit-
ted may have been wasted. To alleviate this situation,
the implementation can try to recover by rereserving
the resource and committing again. Also, the valida-
tion server can keep the reservations past the timeout
until someone else reserves the resource. Then, if the
network failure is temporary and verifier keeps sending
the commit request even after the timeout (but still
within the authorisation), the commit may succeed.

7 The SPKI Validation Protocol
An overview of the protocol from the verifier’s point
of view has been given in Figure 5. In the first phase,
the validation servers are queried to see if the online
checks would pass or not (see Figure 2). For non-limit
validations, the final response will come already in this
phase. For limit validations, if the replies to the queries
indicate that all of the checks will pass, the verifier can
then commence with the second phase, in which all the
reservations are then committed (see Figure 3).

7.1 Message formats
Between client and verifier

All the messages in this section have been defined us-
ing expressions resembling S-expressions for uniformity
and readability purposes. The actual messages will fol-
low the ISAKMP message structure and an example of
a message in ISAKMP form has been included. The
conversion of other messages is equally straightforward.
When a client wants to request a service from a ser-

vice provider, it sends a message containing the follow-
ing information to the server:

(Message definition 1)

(service-request
(version VERSION) [optional]

(request REQUEST)
(auth CHAIN)
(valid-auth VALIDCERT) [optional]
(verbose)) [optional]

where VERSION is a byte string that uniquely de-
fines the version of the message format. REQUEST is
a free-form field understood by both the client and the
server/verifier, CHAIN is the certificate chain proving
that the client has the permission to request the service,
and VALIDCERT is the validation certificate that proves
that the verifier has the right to check all the limited-
use online checks contained in CHAIN. "verbose" is an
optional field that, if present, specifies that the verifier
should give detailed error messages; instead of a single
return value, the verifier should reply by sending the
entire chain of certificates it attempted to verify and
a reason code for each online check contained within
those certificates. The possible reasoncodes are listed
in Section 7.2.
The information contained in messages of the above

format can be represented using ISAKMP payloads as
illustrated in Figure 4.

Between verifier and validator, unlimited checks

All online checks except limit checks can be performed
in one phase. For crl, reval and one-time checks, the
verifier sends to the validator a request of the form:

(Message definition 2)

(validation-request
(version VERSION) [optional]
(spki-query QUERY)
(verbose)) [optional]

where QUERY is a validation query as defined in Sec-
tion 4.3.
The validator then sends back a reply of the form:

(Message definition 3)

(validation-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(spki-reply REPLY)
(reason REASONCODES))

where hash(QUERY) is a reference to the query.
REPLY is the reply as defined in Section 4.3.

Between verifier and validator, limited checks

limit checks have to be performed in two phases to
make sure all the checks in the chain will either succeed

10 of 17

C = client
P = provider/verifier
V = validation server

E: chain complete
A: P asks for online check
 authorisation from C,
 unless it was provided
 together with CHAIN
 or is not needed

E: P got
 authorisation
 certificates
 (Certificate 1)

A: for each online check
 in CHECKS:
 P negotiates SA with V
 if SA does not exist,
 makes a reservation

E: all reservations
 okay or no online
 checks

A: for each online check
 in CHECKS:
 P sends a signed
 request to V,
 asking to commit
 the reservations

E: event

A: action

(initial
state)

E: C
contacts
P

A: SA negotiation
 b/w C & P

E: negotia-
 tion failed

E: negotiation
 successful

A: C sends service
 request and
 certificate
 chain CHAIN
 to P

E: SA b/W C & P exists
 and has sufficient
 lifetime
A: C sends service
 request and
 certificate
 chain CHAIN
 to P
(Message 1)

E: CHAIN
 incomplete

A: P sends
 request to
 resolver

E: no more relevant
 certificates

A: P says NO
(300,301,
303,304)
to C

E: found more
 certificates

A: resolver sends
 certificates to P,
 P may add to CHAIN

E: error, did not
 get authorisation

A: P says NO (300,302) to C

A: P asks
 C if
 should
 retry

E: C says no retry

A: P sends CHAIN to C if P completed it,
P asks V to cancel successful reservations

E: C says
should
retry

A: P waits a
moment, then
tries to reserve
checks not
yet reserved

Reserve phase

Commit phase

E: all commits
 okay

A: P gives service to C,
 and says YES (200)

E: critical failure:
 some commits failed
A: P reports error (5xx) to C

A: P asks C if should
 attempt to recoverE: C says

 no recovery

E: C says should
 try to recover

A: set list of online
 checks CHECKS to
 contain all checks
 in CHAIN

E: some
 reservations
 failed

E: all
failures
because
already
reserved
and
retries
left

E: not all failures
because already
reserved

A: P sets CHECKS to contain
 those online checks
 whose commit failed

E: there are no
 retries left

E: there are
 retries left

E: no SA b/w C & P

E: all reservations okay

E: not all failures
 because already
 reserved

 OR

 there are no
 retries left

E: some
 reservations
 failed

E: all failures
 because already
 reserved and
 retries left

A: P waits a moment,
 then tries to
 reserve checks
 not yet reserved

E: reservations to commit
E: nothing to commit

A: P says NO
 (500) to C

A: for each online check
 in CHECKS:
 P negotiates SA with V
 if SA does not exist,
 makes a reservation

Reserve phase

A: for each online check
 in CHECKS:
 P sends a signed
 request to V,
 asking to commit
 the reservations

Commit phase

A: P says NO
 (300,305)
 to C

 A: P
 says NO (300,
400) to C, and sends
CHAIN with reason
codes if verbose

(final
state)

Figure 1: Verifier state machine.

11 of 17

(initial
state)

A: SA negotiation
 b/w P & V

E: negotiation
 failed
A: return NO
(305)
(connectivity
problem)

E: negotiation
 successful

E: timeout
 (no reply)
 AND
 authorisation
 exhausted
A: return NO (305)
 (connectivity
 problem)

E: V said YES (200,210,211)
 (reserved) (Message 5)

A: return YES (200,210,211)

E: no SA b/w P & V

E: SA already exists

A: P sends
 reservation
 request to V
 (Message 2 or 4)

E: V said YES (201)
 (approved) (Message 3)
A: remove the passed
 check from CHECKS,
 return YES (201)
 as a signed
 message

A: return NO
 (4xx)

E: V said NO (4xx)
 (Message 3 or 5)

E: timeout (no reply)
 AND
 authorisation still valid
A: resend the request

E: V said
 NO (3xx)
 (Message 3 or 5)

A: return
NO (3xx)
 (validity
 unknown)

Figure 2: The reserve phase. Executed concurrently for each online check in the list of checks CHECKS.

E: V said NO
 (Message 7)

A: return NO
 (5xx)

E: V said YES (2xx)
 (Message 7)
A: return YES (2xx)
 as a signed
 message

A: P sends V
 a signed
 commit request
 (Message 6)

E: timeout (no reply)
 AND
 authorisation still valid
A: resend the request

E: timeout (no reply)
 AND
 authorisation exhausted
A: return NO (305)
 (connectivity
 problem)

(initial
state)

Figure 3: The commit phase. Executed concurrently for each online check in the list of checks CHECKS.

12 of 17

or fail. In the first message the verifier announces the
wish to use some of the limit:

(Message definition 4)

(reservation-request
(version VERSION) [optional]
(spki-query QUERY)
(verbose)) [optional]

In the reply, the validator informs the verifier,
whether the necessary limit exists:

(Message definition 5)

(reservation-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(reason REASONCODES)
(commit-by COMMITBY)) [optional]

where COMMITBY indicates by which time the verifier
has to confirm that it wants to use the limit. The
validator has reserved the limit for the indicated time
and if the verifier does not send the confirmation within
the indicated timeframe, the reservation will expire.
This does present a problem for the protocol: if for

some reason the verifier is unable to send the confirma-
tion message in time although other confirmations in
the chain have been sent, there is a risk that the chain
will not be completely valid and some limits will be
lost. The verifier can try to compensate by rereserving
the limit, but this is only a partial solution. Further
study of this problem is left to future work.
When the verifier has successfully reserved all the

necessary limits, it can send the confirmation message:

(Message definition 6)

(commit-request
(version VERSION) [optional]
(spki-query hash(QUERY))
(cancel) [optional]
(verbose)) [optional]

where "cancel" indicates that the verifier does not
want to confirm the reservation. This would be appli-
cable if some other reservations had failed, for instance.
The validator will reply with a message of the form:

(Message definition 7)

(commit-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(spki-reply REPLY)
(reason REASONCODES))

It should be noted that if the confirmation for some
reason arrived late, the reply could be negative.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
! Initiator !
! Cookie !
+-+
! Responder !
! Cookie !
+-+
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-+
! Message ID !
+-+
! Length !
+-+
! Next Payload ! RESERVED ! Payload length !
+-+
! Domain of Interpretation (DOI) !
+-+
! Protocol-ID ! SPI Size ! Notify Message Type !
+-+
! !
~ Security Parameter Index (SPI) ~
! !
+-+
! !
~ Notification Data ~
! [Version] !
+-+
! Next Payload ! RESERVED ! Payload length !
+-+
! Cert Encoding ! !
+-+-+-+-+-+-+-+-+ !
~ Certificate Data ~
! !
+-+

~ ~
~ ~
~ ~

+-+
! Cert Encoding ! !
+-+-+-+-+-+-+-+-+ !
~ Certificate Data ~
! !
+-+
! Next Payload ! RESERVED ! Payload length !
+-+
! Domain of Interpretation (DOI) !
+-+
! Protocol-ID ! SPI Size ! Notify Message Type !
+-+
! !
~ Security Parameter Index (SPI) ~
! !
+-+
! !
~ Notification Data ~
! [Verbose] !
+-+

Figure 4: An ISAKMP payload definition of a service
request.

7.2 Reason codes

The possible REASONCODE values are divided into cate-
gories as follows:

1xx Informational. These values are reserved for in-
formational messages.

2xx Is valid.

200 YES, for no particular reason. The server did
not specify a reason for saying yes.

13 of 17

201 YES, is valid. Indicates the resource was not
reserved, and that the online check was al-
ready performed and it passed. This code
should only get returned if the resource is of
a non-exhaustible nature.

210 YES, reservation was successful. The online
check was reserved and will be available for a
commit for a limited period of time.

211 YES, reservation was committed, and the on-
line check thus passed.

3xx Not known if valid.

300 NO, validity unknown for no particular rea-
son. The server did not specify a reason for
its inability/unwillingness to determine if the
certificate is valid.

301 NO, try later. E.g., the resolver was busy
and a complete chain could not be formed,
or reservation would have been possible un-
less some other reservation(s) had not already
been made.

302 NO, not authorised to ask. The authorisation
provided was insufficient.

303 NO, send complete chain. The client should
send the complete certificate chain to use.
The server is not willing to acquire the chain
for the client.

304 NO, incomplete certificate chain. The server
tried to complete the chain provided by the
client, but failed.

305 NO, connectivity problem.
310 NO, not interested. The server is not autho-

rised to validate the certificate.
311 NO, syntax error. E.g., the validation server

did not understand the question due to a mal-
formed request.

4xx Not valid.

400 NO, for no particular reason. The server did
not specify a reason for saying no.

401 NO, was revoked. The certificate has been
revoked.

402 NO, is exhausted. The resource that the on-
line check was guarding has been (possibly
temporarily) exhausted.

5xx Severe error occurred. Some, but not all of the
online checks were committed.

500 NO, a severe error has occurred. The server
did not specify more details about the error.

501 NO, connectivity problem at a critical mo-
ment.

8 An example
As an example of the usage of our protocol we cover a
scenario in which certificates are used to authorise and
control credit-card-like payments, like in our original
example.

C

H

K

S

credit
card
company

cardholder

parallel
card
holder

shop

CSC CCH

CKS CHK

Figure 5: An example scenario.

In the scenario we have a credit card company C
and a "cardholder" H. C issues H a certificate cCH

with which it authorises H to make payments, which
will first be debited from C’s account, and which H
should later pay back to C. (This certificate represents
a traditional credit card.)

cCH = (cert (issuer C) (subject
H) (propagate) (tag (has-credit
unlimited)) (not-after E))

(2)

where E is the expiration date. Here we are assum-
ing that H has no monthly credit limit. It should be
noted that the account number of H is not mentioned
in the certificate. This is not necessary as the credit
company can store this information, when it issues this
certificate. The account number is of no concern to the
user nor the merchant; in fact, leaving it out promotes
privacy. Also, it makes it possible to change the ac-
count number and Certificate 2 without affecting any
of the subsequent certificates in the chain.
H wants to give his offspring K a "parallel card", i.e.

H wants to allowK to use his credit account. However,
H does not trust K to fully understand the value of
money, and wants to only allow K to accumulate a

14 of 17

maximum of $500 worth of debt to H. To do this H
sets up a validation server (or uses an existing one),
and issues the certificate cHK to K.

cHK = (cert (issuer H) (subject K)
(propagate) (tag (has-credit $500))
(not-after E) (online limit (uri
svp:hv.net) Hv (max $500)))

(3)

where the URI prefix svp: (SPKI Validation Proto-
col) refers to the validation protocol presented in this
paper. Hv is the principal that handles validation for
H, and hv.net is the DNS domain name of Hv.
The validation server Hv keeps track of the transac-

tions initiated by K, and will only confirm the validity
of a certificate if that certificate does not cause the
limit mentioned in the validity check field of cHK to be
exceeded.
The value $500 in the authorisation field serves as a

sanity check in the sense that it makes it impossible to
attempt charges of more than $500 at once. Thus, the
online check only needs to be made for charges of $500
or less.
Now, suppose K would like to order a game console

priced at $300 from the Internet. He has unfortunately
forgotten that he has already used $240 of his credit
limit this month, so he will not have enough credit left.
He writes the following certificate cKS to the seller S.

cKS = (cert (issuer K) (subject S)
(propagate) (tag (may-charge $300))
(not-after E) (online limit (uri
svp:kv.net) Kv (once-only)))

(4)

As can be seen from the certificate, it does not con-
tain any information that would specify the “account”
from which the charge may be made. If S were to pos-
sess a chain other than {cCH ,cHK} that would prove
that K is authorised to make the transaction described
in cKS and to delegate that authority, then S might be
able to get its $300 from a different source. The use of
a particular chain can be enforced through the use of
different keys. If a particular key only has one autho-
risation, then there can be no confusion of which one
to use.
K uses the validation server kv.net (with principal

Kv) that ensures that authorised payments can only be
charged once, and that K knows if the charge has been
made or not. In practice, this validation server could
be e.g. K’s own terminal, which asks K to confirm.
K then acquires and sends the chain {cCH ,cHK ,cKS}

to S. S then writes the certificate cHSval, which will
authorise C to check the validity of the certificates that
require an online check.

cHSval = (cert (issuer S) (subject C)
(tag (validate hash({cCH,cHK,cKS}))
(nonce 666)) (not-after T+5min))

(5)

where T is the current time at the time of creating
cHSval. It should be noted that cHSval only authorises
the validation of certificates in the context of the spec-
ified certificate chain. This is to forbid another party
(for instance, the credit card company) from construct-
ing a different chain for the transaction, and using this
authorisation for a purpose other than it was intended
for.
Validation servers are naturally free to decide whose

authorisations to trust, but in this example we follow
the rule presented in Section 6.3. The validation server
Hv only honors validation certificates issued by H, K
or S. The validation server Kv only honors validity
check authorisations issued by K or S. In general, Hv

honors authorisations from those entities who appear
in certificate chains after those certificates in which Hv

is mentioned as the validation server; in this case, (pos-
sibly indirect) recipients of the certificate cHK could all
be accepted by Hv as a source of authority.
When S has the payment information and charge au-

thorisation, it can make the charge if it has the prod-
uct in stock and chooses to make the deal. It can
do so by sending all of the certificates received from
K together with the validation certificate that S itself
wrote. C then makes the validity checks, and finds that
the Hv replies that a check failed, because the charge
attempted exceeds the limit set by H.
Had the limit not been exceeded, the online checks

would have been successful, and C would then have
committed to the transaction, and transferred the
charged amount (minus any fee) to S’s account. S
should then deliver the ordered product to K.
The transaction must be handled in 5 minutes, or

otherwise some of the certificates expire, which makes
it impossible to complete the transaction.

9 Evaluation

According to the criteria introduced in Section 3, we
can state that our protocol has the following properties:

Fail safety If the validation server fails to respond,
the permissions should not be granted. This pre-
vents denial of service attacks against the valida-
tion servers from hiding the fact that the certifi-
cate has been revoked.

Timeliness The validation protocol does not intro-
duce any significant delay in the propagation of
revocation information. Because everything is on-
line, there is no need to use outdated copies of
information. However, the notification and man-
agement of the validation servers may introduce

15 of 17

some delay and is, therefore, a relevant topic for
future work.

Adjustability The verifier can affect his own risk level
by choosing to skip the online check based on the
length of time elapsed since the same check was
previously made.

Granularity The revocation can be performed on a
per certificate basis, but not to individual permis-
sions within a certificate. It should be noted that
revoking certificates can affect third parties if the
rights had been delegated.

Containment The validation server only controls the
online validation and not the issuing of certificates.
So, a compromise of the validation server will not
facilitate the creation of new illegal certificates.
The only exception is renew, where the validation
server distributes new certificates. These certifi-
cates can, however, be issued offline in which case
there is no problem with containment.

Reversal of revocation It is a simple matter of noti-
fying the validation server that the revocation was
an error or that the circumstances have changed
and that the certificate should be re-enabled.

Protection of revocation This depends on the
management of the validation server and is cur-
rently under work.

10 Future work

One way to improve the performance of long certificate
chains is to use reduction certificates [6]. A certifi-
cate reduction certificate (CRC) replaces two or more
certificates with one certificate so that this one certifi-
cate has the exact same meaning as the chain replaced.
This reduction can be performed automatically and
will make any future use faster. However, an unfor-
tunate side-effect of the need for authorisation in limit
validations is that it makes reduction over such cer-
tificates impossible. To verify the limit validation, we
need an authorisation from the receiver of the original
certificate or her descendant. However, if the receiver
is removed from the chain by the reduction, there is
no way of proving the descendence and, hence, the au-
thority. This makes any further validations impossible
and the CRC unusable.
Although certificate chain reduction certificates

bring problems to the revocation protocol, they may be
critical to the performance of the system. This would
be the case especially in a widely deployed PKI with

millions of certificates and potentially very long certifi-
cate chains. Thus, merely noting that chain reduction
certificates cannot be created for chains that include
online validity checks is not an attractive option in the
long term. This is an issue that we are going to address
in the future.
A possible other benefit of reduction certificates is

the promotion of anonymity. However, if a reduction
certificate contains online checks, anonymity might be
compromised. Therefore, any online validation does
not appear to be compatible with reduction certificates
created for privacy purposes. If, on the other hand,
the online validations can be performed before reduc-
tion and the resulting certificate has no online checks
(though presumably a shorter validity period), the re-
duction might end up improving privacy.
Another issue that needs further attention is how the

validation server finds out that the certificate is re-
voked. If the validation server is not the same server
that issued the certificate or is otherwise responsible
for making the revocation decision, an additional noti-
fication protocol may be needed.
The performance and scalability issues of certificate

based systems in general and the validation protocol
in particular still need further work. At the moment,
they look promising, but without extensive empirical
tests we can not state anything definite about their
suitability as an Internet-wide solution.
In our project, we are also going to do further usabil-

ity research on the subject of delegation management.
So far we have built the underlying certificate function-
ality in a fairly technology-oriented manner, but the
management issues really cannot be addressed with-
out a strong emphasis on usability. In our usability re-
search, we are trying to find out how certificates should
be presented to users, i.e. how much must the users un-
derstand themselves and how much can be taken care
of by the software. Furthermore, in a related research
effort we are studying what makes users feel secure,
i.e. which information the users want to see and what
decisions they want to make themselves.

11 Conclusions
In this paper, we have discussed the different methods
for certificate validation and revocation, and presented
a protocol for authentication and certificate validation
for SPKI based systems.
We conclude that certificate revocation lists are not

the most attractive revocation method as they tend
to transfer possibly large amounts of unnecessary in-
formation. We feel that online checks, which transfer
only the relevant information and do not require stor-

16 of 17

age of information that the party may never need, are
more appropriate. As a consequence, we propose that
CRLs should be deprecated, if not removed and that
the emphasis should be moved to online validations.
Using the authority delegated to a public key through

a certificate chain requires a proof of possession of the
corresponding private key. This is achieved using an
authentication protocol. ISAKMP is a standard frame-
work for key and security association agreement. We
proposed to use the framework for certificate validity
checks as well, and defined two new phase two ex-
changes for ISAKMP to implement our protocol.
We presented a set of design criteria a good protocol

should fulfill and finished by analysing our protocol
and concluding that we were able to satisfy most of
them. The remaining ones were discussed and they are
currently under work.

References
[1] Paul Ammann, Ravi S. Sandhu, and Gurpreet S.

Suri. A distributed implementation of the extended
schematic protection model. In Proceedings of the sev-
enth Annual Computer Security Application Confer-
ence, pages 152–164, 1991.

[2] Tim Berners-Lee, Roy T. Fielding, and Larry Masin-
ter. Uniform Resource Identifiers (URI): Generic syn-
tax. Request for Comments: 2396, August 1998.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. In Proceedings of the 1996
IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, California, May 1996.
IEEECSP.

[4] Claudio Calvelli and Vijay Varadharajan. Represen-
tation of mental health application access policy in a
monotonic model. In Proceedings of 1993 IEEE Com-
puter Security Applications Conf., December 1993.

[5] Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L.
Rivest, Brian M. Thomas, and Tatu YlÃűnen. Simple
public key certificate. Internet draft (expired), IETF
SPKI Working Group, March 1998.

[6] Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L.
Rivest, Brian M. Thomas, and Tatu YlÃűnen. SPKI
certificate theory. Request for Comments: 2693,
September 1999.

[7] Thomas Hardjono and Tadashi Ohta. Approaches to
secure delegation in distributed systems. In Proceed-
ings of the 12th Annual International Phoenix Confer-
ence on Computers and Communications, pages 188–
194. IEEE Computer Society Press, March 1993.

[8] Dan Harkins and Dave Carrel. The Internet Key Ex-
change (IKE). Request for Comments: 2409, Novem-
ber 1998.

[9] I-Lung Kao and Randy Chow. An extended capa-
bilities architecture to enforce dynamic access control
policies. In 12th Annual Computer Security Applica-
tions Conference, 1996.

[10] Hugo Krawczyk. SKEME: A versatile secure key ex-
change mechanism for Internet. In Symposium on Net-
work and Distributed Systems Security, pages 114–127,
San Diego, California, February 1996. Internet Society.

[11] Douglas Maughan, Mark Schertler, Mark Schneider,
and Jeff Turner. Internet Security Association and
Key Management Protocol (ISAKMP). Request for
Comments: 2408, November 1998.

[12] Silvio Micali. Certificate revocation system. U.S.
Patent 5666416. Issued September 9, 1997.

[13] Michael Myers, Rich Ankney, Rich Malpani, Slava
Galperin, and Carlisle Adams. X.509 Internet public
key infrastructure Online Certificate Status Protocol –
OCSP. Internet draft, March 1999.

[14] Moni Naor and Kobbi Nissim. Certificate revoca-
tion and certificate update. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, Texas,
January 1998. Usenix Association.

[15] Hilarie K. Orman. The Oakley key determination pro-
tocol. Request for Comments: 2412, November 1998.

[16] Ronald L. Rivest. Can we eliminate certificate re-
vocation lists? In Proceedings of the Second Inter-
national Conference on Financial Cryptography, An-
guilla, British West Indies, February 1998.

[17] Ronald L. Rivest and Butler Lampson. SDSI –
A simple distributed security infrastructure. (see
SDSI web page at http://theory.lcs.mit.edu/˜cis/
sdsi.html).

[18] Ronald L. Rivest and Butler Lampson. SDSI – A sim-
ple distributed security infrastructure. In Proceedings
of the 1996 Usenix Security Symposium, 1996.

[19] Ian Simpson. Modeling the risks and costs of dig-
itally signed certificates in electronic commerce. In
Proceedings of the second USENIX Workshop on Elec-
tronic Commerce, pages 287–297, Oakland, California,
November 1996. USENIX.

[20] Stuart G. Stubblebine. Recent-secure authentication:
Enforcing revocation in distributed systems. In Pro-
ceedings 1995 IEEE Symposium on Research in Secu-
rity and Privacy, pages 224–234, Oakland, California,
May 1995.

[21] Vijay Varadharajan and Claudio Calvelli. An ac-
cess control model and its use in representing mental
health application access policy. IEEE Transactions on
Knowledge and Data Engineering, 8(1):81–95, Febru-
ary 1996.

17 of 17

